Sihao’s manuscript “Microwave Package Design for Superconducting Quantum Processors” published in PRX Quantum.

Sihao, Ben, and their co-authors’ manuscript “Microwave Package Design for Superconducting Quantum Processors” was published in PRX Quantum. In this work, we present an approach to microwave package design focusing on material choices, signal line engineering, and spurious mode suppression. We describe design guidelines validated using simulations and measurements used to develop a 24-port microwave package. Analyzing the qubit environment reveals no spurious modes up to 11 GHz. The material and geometric design choices enable the package to support qubits with lifetimes exceeding 350 μs. The microwave package design guidelines presented here address many issues relevant for near-term quantum processors. Congratulations Sihao, Ben, and co-authors at EQuS and Lincoln Laboratory!



Professor William D. Oliver awarded 2021 Thornton Family Faculty Research Innovation Fellowship (FRIF)

The Thornton Family FRIFs were established to recognize midcareer faculty members for outstanding research contributions and international leadership in their fields. The FRIFs provide tenured faculty with resources to pursue new research and development paths, and to make potentially important discoveries through early-stage research.

The Thornton Family Faculty Research Innovation Fellowships were created through the generosity of Prof. Richard Thornton, SM ‘54, ScD ’57, an EECS faculty member for more than 40 years. Congratulations, Will!



Aziza Almanakly awarded 2021 Paul and Daisy Soros Fellowship

The Paul & Daisy Soros Fellowships for New Americans is a fellowship exclusively for immigrants and children of immigrants who are pursuing graduate school in the United States. The program draws more than 2,400 applications annually for just 30 fellowships. The rigorous selection process is focused on identifying the most promising New Americans who are poised to make significant contributions to the nation through their work. In addition, the selection team looks for a commitment to the United States’ fundamental principles and ideals. The Fellows can study in any degree-granting program in any field at any university in the United States. Selection is based on merit – the specific selection criteria emphasize creativity, originality, initiative and sustained accomplishment. Conglaturations, Aziza!

The Paul & Daisy Soros Fellowships for New Americans was also featured in MIT News.



Tim’s manuscript “Automated design of superconducting circuits and its application to 4-local couplers” published in npj Quantum Information

Tim, Florian, and their co-author’s manuscript “Automated design of superconducting circuits and its application to 4-local couplers” was published in npj Quantum Information. Our work propels the quickly evolving field of superconducting circuit quantum computation towards greater automation: Circuits are designed by an automated discovery software, thus bypassing a large part of the tedious design process that is usually done by human researchers. Given a desired target property, the software automatically searches thousands of circuit designs for one that exhibits the property. We demonstrate the usefulness of the method by searching for a circuit that couples multiple quantum bits at the same time. After about four days of running on a computing cluster and searching through more than 250,000 circuits, our software successfully identified a coupler circuit with manageable complexity and low noise sensitivity. In this way, we speed up the design of quantum chips, inspire new design concepts, and free up scientists’ time to make the next breakthrough experimental discovery. Congratulations Tim, Florian and co-authors at EQuS, Lincoln Laboratory, Harvard, and the University of Toronto!



Youngkyu’s manuscript “Multi-level quantum noise spectroscopy” published in Nature Communications

Youngkyu, Antti, Jochen, and co-authors’ manuscript, “Multi-level quantum noise spectroscopy,” was published in Nature Communications. In this work, we propose and experimentally demonstrate a spin-locking-based noise spectroscopy protocol that accounts for – and utilizes – multiple qubit transitions. Our protocol extends the spectral range of weakly anharmonic qubit spectrometers beyond the present limitations set by their lack of strong anharmonicity. Also, the additional information gained from probing the higher-excited levels enables identifying and distinguishing contributions from different underlying noise mechanisms. Congratulations Youngkyu, Antti, Jochen, and co-authors at EQuS and Lincoln Laboratory!



Will featured in MIT News!

MIT News posted a featured article on Professor William D Oliver entitled, “Transforming quantum computing’s promise into practice.”

The article highlights the continuous development of fundamental quantum technologies at MIT in the EQuS group and at Lincoln Laboratory. Realizing the promise of quantum computing will require both basic science and fundamental engineering – the “quantum engineering” of extensible technologies. The Center for Quantum Engineering  and its industry membership group are focused on bringing quantum technologies from scientific curiosity to technical reality.



Dan’s manuscript, “Universal non-adiabatic control of small-gap superconducting qubits,” published in Physical Review X!

Dan, Yun-Pil, Bharath, and co-authors’ manuscript, “Universal non-adiabatic control of small-gap superconducting qubits,” was published in Physical Review X. In this work, performed in collaboration with Yun-Pil Shim and Charlie Tahan at the Laboratory for Physical Science (LPS), we demonstrated the use of non-adiabatic driving to implement a universal set of gates on small-gap qubits. Our test device was a new type of “composite quantum bit” that features a small gap and affords longer coherence times with greater immunity to environmental noise than current standard architectures. The control technique demonstrated here enables fast, high-fidelity control of small-gap qubits, including so-called “protected qubits,” which like the composite qubit hold the promise of higher coherence times, but are difficult to control using standard, resonant techniques. Congratulations Dan, Yun-Pil, Bharath and co-authors at EQuS, Lincoln Laboratory, and LPS!



Quantum Engineering featured in MIT News!

MIT News posted a featured article on the subject of quantum engineering entitled, “Explained: Quantum engineering.”

The article addresses several topics related to quantum engineering, emphasizing that quantum engineering encompasses both science and engineering. Will Oliver (MIT and Lincoln Laboratory) and John Chiaverini (Lincoln Laboratory) both provide insights into this new discipline, its definition, and its future role building a quantum workforce.



The Center for Quantum Engineering (CQE) Kick-off Symposium

The MIT-CQE is dedicated to the academic pursuit and practice of quantum science and engineering to accelerate the practical application of quantum technologies for the betterment of humankind.

On October 30, 2020, the Center for Quantum Engineering (CQE) held a kick-off Symposium to mark their new partnership with the Laboratory for Physical Sciences (LPS) and the NSA. The event hosted more than 70 people online with more than 10 speakers from both the NSA/LPS and MIT.

The event commenced with an introduction of CQE by Charlie Tahan, Chief Scientist of LPS, and William Oliver, Director of CQE. This introduction was followed by the welcome remarks from Maria Zuber (VPR, MIT), Mark Segal (Research Director, NSA), Eric Evans (Director, MIT Lincoln Lab), Rob Cunningham (Director, LPS), and Marc Baldo (RLE Director, MIT).

The remarks were followed by a series of technical talks from faculty and researchers at MIT, including the newly appointed “Doc Bedard” Fellows. Through the generous support of the NSA/LPS, the CQE will support eight “Doc Bedard” 3-year graduate fellowships, named for pioneering NSA/LPS researcher Fernand “Doc” Bedard.

Dr. Jeremy Kepner, Laboratory Fellow at MIT Lincoln Laboratory, and Dr. Daniel Sanchez, Associate Professor of EECS, presented the broad offerings at MIT in high-performance classical computing hardware and architectures. The “Doc Bedard” fellows Chris McNally, Kyle DeBry, and Sujit Rao, Sujit’s advisor, Dr. Anand Natarajan, Assistant Professor of EECS, and LPS sponsored researcher Bright Ye spoke about their respective research projects in quantum information science and technology.

Additionally, Maddie Sutula, the iQuHACK chair for the student-led Interdisciplinary Quantum Information Science and Engineering (iQuISE) program, spoke about the CQE-iQuISE partnership and educational activities, including the MIT-CQE iQuISE Seminar Series and the annual iQuHACK quantum hack-a-thon.



Bharath’s manuscript, “Generating spatially entangled itinerant photons with waveguide quantum electrodynamics,” published in Science Advancespt 

Bharath and co-authors’ manuscript, “Generating spatially entangled itinerant photons with waveguide quantum electrodynamics,” was published in Science Advances. The publication was also featured in MIT News.  In this work, we demonstrated how quantum interference between the photons emitted by qubits into a waveguide can generate spatially entangled, itinerant photons that travel in opposite directions. These types of photons can then be used for long-distance communication between quantum processors. Congratulations Bharath and co-authors at EQuS and our Lincoln Laboratory team!



Alex’s manuscript “Comparison of dielectric loss in titanium nitride and aluminum superconducting resonators” published in Applied Physics Letters

Alex and co-authors’ manuscript, “Comparison of dielectric loss in titanium nitride and aluminum superconducting resonators,” was published in Applied Physics Letters. In this work, we use a surface loss extraction technique to identify the strength and location of loss mechanisms on the various surfaces of coplanar waveguide resonators — substrate to air, substrate to metal, and metal to air — and within the silicon substrate. We use the technique to compare aluminum and titanium nitride resonators. We then intentionally alter one fabrication step — presence or absence of a post-process hydrofluoric etch — and directly identify the change in resonator Q associated with the substrate-air interface. Congratulations Alex, Greg, Wayne, Kyle, and co-authors with the Lincoln Laboratory side of our team!



Uwe von Luepke’s manuscript “Two-qubit spectroscopy of spatiotemporally correlated quantum noise in superconducting qubits” published in the inaugural issue of PRX Quantum

Uwe and co-authors’ manuscript, “Two-qubit spectroscopy of spatiotemporally correlated quantum noise in superconducting qubits,” was published in PRX Quantum. In this work, conducted while Uwe was a visiting research assistant in EQuS and in collaboration with Felix Beaudoin and Leigh Norris in Lorenza Viola’s group at Dartmouth, we performed noise spectroscopy of correlated noise on two superconducting qubits, extracting the self-correlation and cross-correlation spectra. The presence of spatial and temporal noise correlations has implications for the calibration, error detection, and error correction in larger scale quantum systems. Congratulations Uwe, Felix, Leigh, and co-authors at Dartmouth, Lincoln Laboratory, and the EQuS group!



Professor William D Oliver selected to serve on the National Quantum Initiative Advisory Committee (NQIAC)

On August 28, 2020, the White House Office of Science and Technology Policy (OSTP) and the U.S. Department of Energy (DOE) selected Professor William D Oliver as a member of the National Quantum Initiative Advisory Committee (NQIAC), which provides advice to the Administration and help maintain US leadership in quantum information science (QIS). The members of NQIAC include distinguished individuals from industry, universities, Federal laboratories, and other Federal Government agencies who are prominent in their fields, recognized for their achievements, and from diverse backgrounds. Congratulations, Will!



Antti’s manuscript “Impact of ionizing radiation on superconducting qubit coherence” published in Nature

Antti, Amir, and co-authors’ manuscript, “Impact of ionizing radiation on superconducting qubit coherence,” was published in Nature. The result was also featured in MIT News and on the MIT homepage. In collaboration with MIT Physics Professor Joe Formaggio, Pacific Northwest National Laboratory (PNNL), and MIT Lincoln Laboratory researchers, we characterized the impact of ionizing radiation – cosmic rays and environmental nuclear decay events – on superconducting qubit coherence. We then showed that lead shielding improves coherence times. And, our results are consistent with the levels of non-equilibrium quasiparticles seen ubiquitously in superconducting devices. Congratulations to Antti Vepsäläinen, Amir Karamlou, John Orrell (PNNL) and coauthors at the Massachusetts Institute of Technology EQuS, MIT Research Laboratory of Electronics and Joe Formaggio groups, Pacific Northwest National Laboratory – PNNL, and MIT Lincoln Laboratory! Image: Christine Daniloff, MIT.



EQuS group members organize and lead a week-long quantum summer camp for high-school students

EQuS group members Amir, Bharath, Grecia, Megan, Chris and Sarah helped organize and lead a quantum summer camp for high school students. This effort was in collaboration with the Coding School, a tech education nonprofit, and covered the fundamentals of quantum mechanics and quantum computing. The camp had approximately 300 participants from 18 countries and 30 states, 70 percent of whom are from underrepresented backgrounds. An overwhelming majority of the students indicated that attending this camp increased their interest in quantum computing, and that they want to learn more about quantum computing in the future.The quantum summer camp and the other educational outreach efforts by EQuS group members were recently featured in an MIT News article. Great job Amir, Bharath, Grecia, Megan, Chris and Sarah!



Bharath Kannan’s manuscript “Waveguide quantum electrodynamics with superconducting artificial giant atoms” published in Nature

Bharath and co-authors’ manuscript, “Waveguide quantum electrodynamics with superconducting artificial giant atoms,” was published in Nature. In this work, “giant atoms” are realized in a waveguide quantum electrodynamics architecture by coupling transmon qubits at multiple, well-separated locations along a waveguide. The resultant quantum interference is then used to demonstrate waveguide-mediated, decoherence-free interactions. Their publication was also featured in MIT News as a press release. Congratulations Bharath and co-authors at EQuS, Chalmers, RIKEN, and our Lincoln Laboratory team!


Ana Laura Gramajo’s manuscript “Quantum emulation of coherent backscattering in a system of superconducting qubits” published in Physical Review Applied

Ana and co-authors’ manuscript, “Quantum emulation of coherent backscattering in a system of superconducting qubits,” was published in Physical Review Applied. In this work, conducted while Ana was a visiting research in EQuS, superconducting qubits were controlled to emulate weak localization and universal conductance fluctuation phenomena by repeatedly “scattering” the qubit state at a level avoided crossing. Congratulations Ana and co-authors at Centro Atomico Barliloche and Instituto Balsero, Instituto de Nanociencia y Nanotecnologia (INN), Lincoln Laboratory, and the EQuS group!


Danna Rosenberg and the Lincoln lab team’s review paper, “Solid-state qubits: 3D integration and packaging” published in IEEE Microwave Magazine

Danna and co-authors’ review paper on 3D integration and packaging for cryogenic, solid-state qubits was published in IEEE Microwave Magazine, one of five articles featured led by guest editor Joe Bardin on the topic “Quantum Computing for Microwave Engineers.”  This review addresses the current status and challenges related to microwave packaging, interconnects, and 3D integration in a cryogenic environment. Congratulations Danna and coauthors with the Lincoln Laboratory side of our team!


Donna Yost, Mollie Schwartz, Justin Mallek, and the Lincoln Lab team’s manuscript, “Solid-state qubits integrated with superconducting through-silicon vias” published in npj Quantum Information

Donna, Mollie, Justin, and co-authors demonstrated high-aspect-ratio (20:1) and small form factor (10-20 um diameter) superconducting through-silicon vias (TSVs). The TSVs were further demonstrated in a flip-chip geometry with high-coherence superconducting qubits and represent a critical element of 3D integrated quantum circuits. Congratulations Donna, Mollie, Justin, and co-authors with the Lincoln Laboratory side of our team!


Postdoctoral associate Jochen Braumüller’s manuscript “Two-dimensional hard-core Bose-Hubbard model with superconducting qubits” published in npj Quantum Information

In collaboration with Yariv Yanay and Charlie Tahan at LPS, Jochen defines a roadmap for using current experimental capabilities to simulate an interacting many-body system of bosons and measure its properties. This work will guide our experimental activities over the coming years. Congratulations Jochen, Yariv, and co-authors with the EQuS Group at MIT campus and at the Laboratory for Physical Sciences!


Postdoctoral associate Jochen Braumüller and graduate student Leon Ding’s manuscript “Characterizing and optimizing qubit coherence based on SQUID geometry” published in Physical Review Applied

In their paper, Jochen and Leon investigate the noise properties of more than 50 flux qubits with varying designs of their SQUID loops and observe quantitative agreement of their data with a microscopic model for magnetic flux noise. These results provide a guide for minimizing flux noise in future quantum circuits. Congratulations Jochen, Leon, and co-authors at MIT campus and Lincoln Laboratory!


Megan Yamoah presented with Orloff Award for Research and Service

The Joel Matthew Orloff Awards were established by Dr. and Mrs. Daniel Orloff in memory of their son Joel, a physics major, who passed shortly after graduation 1978. It is awarded yearly to select physics majors in three categories: Research, Scholarship, and Service. Megan was recognized for her research work with EQuS, where she works on the intersection of novel two-dimensional materials with microwave devices, and for her leadership in Physics Department student organizations and community development efforts. Congratulations, Megan!


Mirabella Pulido presented with MIT James N. Murphy Award

The James N. Murphy Award is an MIT Institute Award established in 1967 in memory of James N. Murphy for his immeasurable contribution to community life at the Institute. It is offered every year to a non-faculty Institute employee. Mirabella was recognized for her continued dedication, above and beyond her job responsibilities, to building a more inclusive, collaborative, and safe environment for group members. Congratulations, Mirabella!


UROPs Fran, Billy, and Megan inducted into the Xi Chapter of Phi Beta Kappa

EQuS is pleased to announce that three senior UROPs – Francisca Vasconcelos, Vilhelm (Billy) Woltz, and Megan Yamoah – were inducted to Phi Beta Kappa (PBK). Founded in 1776, PBK is the oldest honorary society in the United States, celebrating the nation’s most outstanding undergraduate students for excellence in the liberal arts and sciences. Fran, Billy, and Megan were among the 116 MIT students inducted to the Xi Chapter this year. Congratulations on this recognition!


Leon Ding awarded 2020 IBM PhD Fellowship

The 2020 IBM PhD Fellowship Award Program received hundreds of applications from 140 universities in 31 countries. Applications were reviewed by eminent technologists from across IBM. The award recipients demonstrated academic excellence as well as provided innovative, exceptional research proposals.


Postdoctoral associate Jochen Braumüller and graduate student Leon Ding submitted their work on 1/f flux noise to the arXiv, titled “Characterizing and optimizing qubit coherence based on SQUID geometry

In their paper, Jochen and Leon investigate the noise properties of more than 50 flux qubits with varying designs of their SQUID loops and observe quantitative agreement of their data with a microscopic model for magnetic flux noise. These results provide a guide for minimizing flux noise in future quantum circuits.


Francisca Vasconcelos publishes “Quantum Computing @ MIT: The Past, Present, and Future of the Second Revolution in Computing.”

UROP, Francisca Vasconcelos, interviewed four MIT quantum computing and information faculty – William Oliver, Dirk Englund, Isaac Chuang, and Aram Harrow – for the MIT Undergraduate Research Journal (MURJ). The article, “Quantum Computing @ MIT: The Past, Present, and Future of the Second Revolution in Computing,” provides a high-level overview of the history of the field, current research challenges, and future prospects of the technology.


EQuS submits six papers to arXiv

Congratulations to the lead authors and co-authors from EQuS who recently submitted papers to the arXiv during December and January!

Uwe von Luepke’s paper, “Two-qubit spectroscopy of spatiotemporally correlated quantum noise in superconducting qubits,” discusses noise spectroscopy of spatiotemporally correlated noise in two qubits. While error detection and correction protocols exist, most rely on an uncorrelated noise assumption. To understand and address correlated noise, one first must characterize it. In this work, Uwe and co-authors experimentally validate a protocol for achieving two-qubit quantum noise spectroscopy. Uwe was a visiting student in EQuS from 2017-2018.

Graduate student, Bharath Kannan’s work, “Waveguide quantum electrodynamics with giant superconducting artificial atoms,” realizes “giant atoms” by coupling transmon qubits to multiple, well-separated locations along a waveguide. When modeling light-matter interactions, atoms are typically treated as small point-like objects. The paper probes the physics of the giant-atom regime of waveguide quantum electrodynamics (wQED) and shows that this architecture can be applied for quantum simulations and non-classical photon generation for quantum communication protocols.

Ana Laura Gramajo’s paper, “Quantum simulation of coherent backscattering in a system of superconducting qubits,” discusses the implementation of a quantum emulator of weak localization (WL) and universal conductance fluctuations (UCF) using coherent scattering at an avoided crossing in a system of two coupled superconducting qubits. The scattering events are controllably implemented as coherent Landau-Zener transitions by driving the two-qubit system multiple times through an avoided crossing. While a priori there is not a direct connection between driven superconducting qubits and mesoscopic disordered electronic systems, the results demonstrate how a well-controlled driven qubit system can be used to study complex effects in mesoscopic physics. Ana was a visiting student in EQuS during 2018.

Postdoctoral Associate Morten Kjaergaard and Lincoln Laboratory Research Scientist Mollie Kimchi-Schwartz submitted their demonstration of a quantum algorithm, entitled “A quantum instruction set implemented on a superconducting quantum processor.” In their paper, they use two superconducting qubits to make the first experimental demonstration of the Density Matrix Exponentiation algorithm. Their experiment shows for the first time how quantum states can act as a quantum instruction set to program a quantum computer.

Postdoctoral Associate Antti Vepsäläinen and graduate student Amir Karamlou submitted their work, entitled “Impact of ionizing radiation on superconducting qubit coherence.” In collaboration with the group of MIT Physics Professor Joe Formaggio, researchers at Pacific Northwest National Laboratory (PNNL),  and MIT Lincoln Laboratory researchers, Antti and Amir characterized the impact of ionizing radiation from the cosmic rays and environmental nuclear decay on superconducting qubit coherence. They also showed that using a lead shield can improve coherence times by reducing the flux of radiation. In order to beat down the noise, EQuS researchers performed a Dicke radiometry “lock-in” experiment, raising and lower a two-ton lead shield on a 10-minute period for 4 days(!)

Graduate student Tim Menke, who holds a joint appointment at MIT and Harvard, also submitted his paper entitled “Automated discovery of superconducting circuits and its application to 4-local coupler design.” In this work, Tim used an optimization algorithm to design a superconducting qubit circuit based on a generalized network of circuit elements and a predefined cost function.


Ziqiao and Grecia win award at iQuHACK

Members of the EQuS group won the Industry Choice award for their project,”VQE for the Schwinger Model with Applications to Classical Simulations.” The event’s sponsors gave the award at the first Interdisciplinary Quantum HACKathon (iQuHACK).

EQuS members, Ziqiao Ao and Grecia Castelazo, joined Artur Avkhadiev and Denis Boyda of the Center for Theoretical Physics to simulate 1 + 1D quantum electrodynamics on a superconducting quantum processor provided by IBM. Their project performed VQE on a massive Schwinger model Hamiltonian, a (1+1)D theory of quantum electrodynamics, and explored its applications to Monte Carlo simulations.


Jochen wins best poster award at MARC 2020 | Bretton Woods, NH

Postdoc Jochen Braumüller won the best poster award for his presentation titled, “Characterizing and optimizing qubit coherence based on SQUID geometry,” at Microsystems Annual Research Conference (MARC) 2020.

MARC showcases the latest accomplishments of MTL/MIT.Nano researchers, celebrating the scientific achievements of students and staff pursuing research at the frontiers of micro/nanotechnology at MIT. For the first time, the student-run conference was co-hosted by MIT.nano and Microsystems Technology Laboratories (MTL). It hosts over 200 attendees, bringing together students, postdocs, faculty, and industrial partners.


Will speaks at QED-C workshop | Santa Barbara, CA

The Quantum Economic Development Consortium (QED-C) hosted a two-day workshop, the QED-C Workshop on Materials for Superconducting Qubits.

Will kicked off the workshop with a talk titled “Introduction to Superconducting Qubits.”

The workshop’s goal is to create connections between the material science and the superconducting qubit communities in order to better understand defects, facilitate the discovery of new materials, and design and fabricate more controllable quantum systems.

The QED-C was developed under the National Quantum Initiative. Its purpose is three-fold:

  • To support enabling technology R&D: e.g. quantum device components, instrumentation, and performance standards
  • To facilitate industry coordination and interaction with government agencies
  • To provide the government with a collective industry voice in guiding R&D investment priorities and quantum workforce issues

Part of the EQuS group, alongside family, friends, and other colleagues.

The Harmonic Modes! From left to right: Kyle Serniak (collaborator from MIT Lincoln Lab) on electric guitar, Mirabella Pulido on vocals, Tim Menke on acoustic guitar, Rebecca Li on drums, Jochen Braumüller on trombone, and Ami Greene on French horn.


EQuS celebrates at third annual holiday party

As another year of research comes to a close, EQuS took the opportunity to celebrate its hard work, challenges, and successes at the annual holiday party. Friends and family members joined the group over dinner, dessert, and drinks at Glass House.

The Harmonic Modes, EQuS’ lab band, made its debut performance toward the end of the night as well, premiering two songs partially written and arranged by postdoc, Jochen Braumüller, and admin, Mirabella Pulido. Most notably, “Rockin’ Around the Cryostat,” a parody on “Rockin’ Around the Christmas Tree,” was a comedic summary of the group’s work over the past few years.

Happy holidays to all. We’re looking forward to another year of learning, progress, and growing in EQuS!


Rebecca wins student poster award at 2019 ISNTT | Atsugi-city, Japan

Graduate student, Qing (Rebecca) Li, won the student poster award for her presentation titled “Improving Superconducting Quantum Technologies with Van der Waals Materials” at the 2019 International School and Symposium on Nanoscale Transport and phoTonics. Congratulations, Rebecca!

From the left: Megan Yamoah, Billy Woltz, and Fran Vasconcelos


Three EQuS members awarded Rhodes Scholarships

Congratulations to Francisca (Fran) Vasconcelos, Vilhelm (Billy) Andersen Woltz, and Megan Yamoah, who have been selected as 2020 Rhodes Scholars. Currently, the three hold UROPs in EQuS. They will begin their postgraduate studies at the University of Oxford next fall.

Fran, Billy, and Megan represent three out of the five MIT recipients, as well as almost 10% of the 32 Rhodes Scholarships awarded to American applicants nationwide this year.

Fran has worked with EQuS since her sophomore year. Her current research focuses on extending quantum state tomography for superconducting quantum processors. At Oxford, she will pursue a MSc in mathematics and foundations of computer science, as well as a MSc in statistical science.

Billy has worked with EQus since summer 2019, and he is working on a superconducting qubit platform for quantum information processing. At Oxford, he will pursue a second undergraduate degree in philosophy, politics, and economics with the goal of addressing both the technical and policy aspects of quantum computing.

Megan has worked with EQuS since her freshman year and has focused on several projects at the forefront of quantum computing research. At Oxford, she will pursue a MPhil in economics, focusing on development economics and the potential for innovation to positively impact emerging economies.

This recognition is a testament to their hard work, perseverance, and raw talent. We at EQuS and the RLE are highly fortunate to count them amongst our EQuS-LL team, colleagues, and friends!


Joel speaks at MIT iQuISE

Postdoctoral Associate Joel Wang gave a talk at MIT’s Interdisciplinary Quantum Information Science and Engineering (iQuISE) program about “Hybrid superconducting circuit made with van der Waals heterostructures.” In this talk, Joel explained how introducing a new material system called “van der Waals heterostructures” may help to advance superconducting quantum technology.


Will featured in MIT xPRO blog post

Will explained the origins and effects of the term “quantum supremacy” in MIT xPRO’s professional blog, The Curve. The post is entitled, “Getting Beyond the Hype of the Google-IBM Quantum Supremacy debate,” and it discusses the Google demonstration and what it represents for quantum computing.


Will speaks at MTQS | Princeton, NJ

Will gave an invited talk at Marching Towards Quantum Supremacy, a conference held at the Princeton Center for Theoretical Science. The conference provided a status update on the leading quantum technologies and cover emerging platforms that may be more resilient to errors.


Billy featured in MIT News

MIT News profiled SuperUROP Billy Woltz in a student spotlight piece titled, “Drawn to open-ended problems.”

In the feature, Billy shares his experiences growing up in a rural town and running cross country, and how his analytical approach to life impacts his research and career.


Will speaks at BeyondC | Vienna, Austria

Will was invited to speak at the Austrian Quantum Information Conference 2019 organized by the SFB BeyondC.

The program, “Quantum Information Systems Beyond Classical Capabilities (BeyondC),” unites researchers from several Austrian universities and institutes, as well as collaborators from the Max Planck Institute for Quantum Optics. Focusing on photons, ions in ion traps, superconducting circuits, and theory, the conference highlighted present achievements and future perspectives for building future quantum information systems.


EQuS welcomes group mascot

The EQuS group welcomed its newest member, a pet rock named SQUID “Dirac” Junction. With a new name plate for his desk, he’s hard to miss in the staging room!


Youngkyu’s paper published in Nature Communications

Congratulations to grad student Youngkyu Sung and his contributing authors on the publication of their paper, “Non-Gaussian noise spectroscopy with a superconducting qubit sensor” in Nature Communications.

In this work, a collaboration between MIT EQuS, MIT Lincoln Laboratory, and the Viola group at Dartmouth, the team performed the first demonstration of non-Gaussian noise spectroscopy using a superconducting qubit. The work extends noise spectroscopy to the regime of high-order polyspectra, enabling a new tool for characterizing noise in the qubit environment.

All contributing authors: Y. Sung, F. Beaudoin, L. M. Norris, F. Yan, D. K. Kim, J. Y. Qiu, U. von Lüpke, J. L. Yoder, T. P. Orlando, S. Gustavsson, L. Viola, W. D. Oliver.

This work was also featured in Phys.org and MIT News.


Manning, Billy, and Erik awarded SuperUROPs

Congratulations to undergraduate students, Manning Chuor, Vilhelm (Billy) Woltz, and Erik Porter, who were awarded SuperUROPs from EECS for the 2019-2020 academic year.

Manning is working on analytically evaluating optimal parameters for improving qubit readout.

Billy’s project involves minimizing induced noise as a by-product of processing quantum information by improving the design of his quantum processors.

Erik’s research aims to characterize chips to see how coherence times and other parameters are affected by the switch to a 3D structure.  This will involve modifying current chip designs to explore different methods of 3D integration by breaking out of the 2D plane so lattices can have more complex designs with less restrictive control line layout.

Part of the EQuS group, alongside alumni, friends, and other colleagues.

Terry thanking guests and reminiscing on his research career.


EQuS and friends celebrate Terry Orlando and his 40 years of research

In honor of the 20th anniversary of the proposal of the superconducting persistent-current flux qubit, friends, family, and colleagues of Terry Orlando gathered in Cambridge to celebrate his long-standing research career.

Current and former collaborators spanning his 40-year research career — from the US and abroad — gathered for a surprise picnic at the MIT Sailing Pavilion. Several people who were unable to attend submitted video greetings from afar.

At the culmination of the event, Terry was presented with a bound, hardcover copy of his 40 most impactful publications during his 40-year research career.

On behalf of all of Terry’s former research collaborators, the EQuS group would like to thank Terry for all that he has done for his students, friends, and the Institute. His numerous, impactful contributions to the field have been invaluable in progressing the fields of high-Tc superconductivity, non-linear dynamics, and superconducting quantum computing.

Thank you, Terry, and we look forward to working with you for years to come!


Wayne, Greg, and Alex’s paper published in Physical Review Applied

Wayne Woods, Greg Calusine, and Alexander Melvilles’s paper, “Determining interface dielectric losses in superconducting coplanar-waveguide resonators,” was published in Physical Review Applied. Congratulations to them and their co-authors!


Ben’s paper published in IEEE IMS Proceedings

Ben Lienhard’s paper, “Microwave Packaging for Superconducting Qubits,” was published in the IEEE IMS Proceedings. Congratulations to Ben and his co-authors!


Philip’s review paper published in Applied Physics Reviews

The review paper, “A quantum engineer’s guide to superconducting qubits,” was published this week as a Featured Article in Applied Physics Reviews as part of a special topic on quantum computing. It covers many fundamentals of design, control, and readout of superconducting qubits.

This review is a contemporary resource with an engineering bent for new and existing practitioners alike. With more than 50 pages and 400 references, it represents a substantial amount of work by Philip Krantz and his co-authors. Congratulations all!


Ben wins an award at IEEE IMS 2019

Grad student, Ben Lienhard, won third place at a competition held at the IEEE IMS 2019 conference in Boston from June 2-7. During IMS, there was the Three Minute Thesis (3MT)  Competition, where contestants are judged on their ability to deliver a comprehensive, three-minute presentation on an approved thesis topic. The presentation is allowed to be supported by a single static slide.

The goal of the contest is to stimulate interest in the applications of microwave technology. Ben’s presentation was on “The Mystery of Quantum Computers.” More information on the competition can be found here.


Will attends WACQT Scientific Advisory Board meeting | Gothenburg, Sweden

Will went to The Wallenberg Center for Quantum Technology (WACQT) at Chalmers to attend a Scientific Advisory Board meeting.


Joel and Will celebrate at SQ20th | Tsukuba, Japan

Postdoctoral associate, Joel Wang, and Will went to the 20th Anniversary of Superconducting Qubits (SQ20th): Progress and Future Directions. Riken organized the symposium to celebrate the progress made with superconducting qubits over the last two decades.


Will visits IBM | Yorktown Heights, NY

Will went to IBM Yorktown Heights to talk about our work on quantum engineering with superconducting qubits.


Will speaks at MIT ILP conference

Will gave an invited talk at the 2019 MIT Information and Communication Technologies Conference: Digital Frontiers organized by the MIT Industrial Liaison Program.

In the talk, he gave an introduction to quantum computing, highlighting the MIT Center for Quantum Engineering and its role in helping to define the quantum future.


Ami is awarded a Google PhD Fellowship

Congratulations to third-year graduate student Ami Greene on being awarded the 2019 Google PhD Fellowship in Quantum Computing!

Effective for two years with a possibility of extending to a third year, schools could nominate only two people for each fellowship program.


EQuS and Blais Group attend off-site to discuss high-fidelity two-qubit gates | Lincoln, NH

Students and postdocs from the EQuS group and Alexandre Blais’ group from the University of Sherbrooke attended an off-site conference to discuss pathways to achieving 99.9% two-qubit gate fidelity.

Throughout the weekend, members of both groups gave talks, held free-form discussions, and participated in organized break-out sessions regarding high-fidelity two-qubit gates and their potential use with machine learning, quartons, microwave squeezing, and quantum simulation. Bharath Kannan gave an after-dinner talk on his latest results in waveguide QED.

Youngkyu Sung, graduate student – “Non-Gaussian noise spectroscopy with a superconducting qubit” (L26:7)

Simon Gustavsson, principal research scientist, and Philip Krantz, former postdoc, marketing Labber.

Members of EQuS and colleagues from Lincoln Lab enjoying at an annual collaboration dinner.


EQuS goes to March Meeting 2019 | Boston, MA

Held in Boston this year, the EQuS group spent the week at the Boston Convention and Expo Center to attend the annual APS March Meeting.

12 EQuS members gave presentations over the course of the five-day conference. Simon Gustavsson and Philip Krantz also represented Labber, a software for instrument control and measurement automation.

  1. Charlotte Bøttcher, graduate student – “Using magnetically-resilient circuit QED techniques to study 2D materials” (C35:4)
  2. Daniel Campbell, former postdoc – “Coherent, Landau-Zener control of a superconducting composite qubit” (B42:11)
  3. Bharath Kannan, graduate student – “Generating non-classical and spatially-correlated photons in a waveguide QED architecture” (B26:10)
  4. Ben Lienhard, graduate student – “Simulation and analysis of packaging of superconducting qubits” (P26:2)
  5. Niels Jakob Søe Loft, former visiting graduate student – “High-fidelity conditional two-qubit swapping gate using tunable ancillas” (L29:3)
  6. Tim Menke, graduate student – “A many-body coupler for coherent 4-local interaction of superconducting flux qubits” (A42.11)
  7. Yanjie (Jack) Qiu, graduate student – “Broadband amplification and squeezed light generation with dispersion engineered Josephson metamaterial” (V28:2)
  8. Youngkyu Sung, graduate student – “Non-Gaussian noise spectroscopy with a superconducting qubit” (L26:7)
  9. Antti Vepsäläinen, postdoc – “Superadiabatic Stimulated Raman adiabatic passage in a three-level transmon” (L29:13)
  10. Uwe von Lüpke, former visiting graduate student – “Two-qubit spectroscopy of spatiotemporally correlated noise in superconducting qubits. Part 2: experiment” (X35:6)
  11. Joel I. J. Wang, postdoc – “Quantum coherent control of graphene-based transmon qubit” (C29:10)
  12. Megan Yamoah, undergraduate student – “Microwave dielectric loss of hexagonal Boron Nitride in the low-temperature, single-photon regime” (P11:6)


RLE announces the MIT Center for Quantum Engineering

The EQuS group is pleased to be an inaugural member of the MIT Center for Quantum Engineering (CQE), an initiative that will support and advance quantum science and engineering at the Institute.

In a joint effort to lead the field forward, the CQE will facilitate the coordination of resources and expertise at the MIT Research Laboratory of Electronics (RLE) and MIT Lincoln Laboratory. In addition, the CQE will support the development of new curricula in quantum engineering to help train a quantum workforce, as well as establishing a consortium to link industry partners to students and scientists.


Will discusses the QC talent shortage with MIT News

MIT News covered “The talent shortage in quantum computing” in a Q&A session with Will.

Quantum information science and technology is a rapidly growing field. In this piece, Will discusses the impending talent shortage, and the crucial role that places like MIT and MIT xPRO – MIT’s online professional development education program – will play in creating a quantum-smart workforce.


Will and Joel give talks in Taiwan | Taipei and Hsinchu, Taiwan

Will and postdoctoral associate, Joel Wang, spoke at National Taiwan University, National Tsing Hua University, and Taiwan Semiconductor Manufacturing Company Limited. Will presented on quantum engineering and Joel presented his research on graphene qubits.


Will speaks at the 687 WE-Heraeus Seminar and attends OpenSuperQ kick-off meeting | Bad Honnef, Germany

Will gave an invited talk at the 687 WE-Heraeus Seminar on “Scalable Hardware Platforms for Quantum Computing. (See photos below.)

In addition, Will also attended the kick-off meeting for OpenSuperQ, the European flagship program aiming to build a 100-qubit superconducting quantum computer and user facility.

Will is a member of the Scientific Advisory Board for OpenSuperQ, one of the two quantum computing efforts funded by the flagship.


EQuS members teach “Intro to Quantum” class

New to quantum? This IAP, MIT will offer an “Introduction to Quantum Computing” course taught by grad student, Amir Karamlou, and UROPs, Francisca Vasconcelos and Megan Yamoah.

Within the first three weeks, the course will cover some fundamental quantum mechanics, survey quantum circuits, as well as introduce important quantum algorithms. In the fourth and final week, they will survey advanced topics, such as quantum error correction and quantum communication, as well as applications to fields ranging from machine learning to chemistry.

For more information, contact Amir Karamlou at karamlou (at) mit.edu.


Postdocs Joel Wang and Dani Rodan’s latest work, “Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures” published in Nature Nanotechnology

Congratulations to postdoctoral associates Joel Wang and Dani Rodan (Jarillo-Herrero Group at MIT) on the publication of their paper, “Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures” in Nature Nanotechnology.

All contributing authors: J. I-J. Wang, D. Rodan-Legrain, L. Bretheau, D. L. Campbell, B. Kannan, D. Kim, M. Kjaergaard, P. Krantz, G. O. Samach, F. Yan, J. L. Yoder, K. Watanabe, T. Taniguchi, T. P. Orlando, S. Gustavsson, P. Jarillo-Herrero, W. D. Oliver

In this work, featured in MIT News, Joel and Dani demonstrate temporal coherence and single qubit-control of a transmon qubit made with a graphene weak link.


EQuS celebrates at second annual holiday party

Friends, families, and members of EQuS gathered to celebrate the end of the year at the annual holiday party. Dinner, dessert, and drinks were served at Flour, featuring a few special treats made by EQuS’ own.

In addition to wrapping up another year of hard work, challenges, and successes, we also recognized postdoc Daniel Campbell, as he moves onto his next chapter as a quantum scientist at Booz Allen Hamilton in January. You will be missed, Dan! Thank you for the scientific contributions, mentorship, and kindness you’ve been bringing to this group since joining in 2015.

Looking forward to another year of learning and growing in EQuS!


Will speaks at ISS2018 | Tsukuba, Japan

Will gave an invited talk at the International Symposium on Superconductivity (ISS2018) entitled, “Quantum Engineering of Superconducting Qubits.”

His talk featured Joel’s work on a transmon qubit with a graphene junction, which was done in collaboration with Pablo Jarillo-Herrero’s group at MIT, as well as Jack’s work on single-mode and two-mode squeezing using the Josephson traveling wave parametric amplifier, done in collaboration with Kevin O’Brien.


MIT featured in Tech Review story, “Quantum computers pose a security threat that we’re still totally unprepared for”

Will was interviewed by Martin Giles of the MIT Technology Review about the need for post-quantum cryptography, in connection with the release of the NASEM report on Quantum Computing: Progress and Prospects.


NASEM releases the consensus study report on quantum computing | Washington, DC

The National Academies of Science, Engineering, and Medicine (NASEM) released a report providing an independent assessment of the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems.

Will was a member of the committee led by Mark Horowitz (Stanford University) that created the report over the course of 18 months.

The study focuses on the technical risks associated with developing a quantum computer, the implications of having one, the future of public key cryptography, and the costs and benefits from a national security perspective.


DOE BES awards sponsored research grant

The EQuS group has been selected by The Department of Energy (DOE), Basic Energy Sciences (BES), to perform sponsored research as part of the Materials and Chemical Sciences Research for Quantum Information Science program.

The selected proposal, titled “High-Coherence Multilayer Superconducting Structures for Large-Scale Qubit Integration and Photonic Transduction,” is led by Lawrence Berkeley National Laboratory (LBNL) and includes co-PIs from UC Berkeley and the EQuS group at MIT.

The three-year program will focus on the development of novel materials, fabrication, and design to enable high-coherence qubits, as well as the generation and detection of non-classical light.


Will speaks at the AVS Symposium | Long Beach, CA

Will spoke about quantum engineering of superconducting qubits at the 65th International Symposium and Exhibition held by the American Vacuum Society (AVS).

The week-long symposium fosters a multidisciplinary environment within science and technology. In addition, it features papers from AVS technical divisions, research groups, and emerging technologies.


MIT.nano is unveiled 

Will gave a keynote address on quantum computing at the MIT.nano launch. His talk was followed by a panel of industry and research leaders, including Bogdan Mihaila (NSF),  Mark Ritter (IBM), and Eric Dauler (MIT Lincoln Lab). Isaac Chuang, an MIT professor of EECS and the Senior Associate Dean of Digital Learning, moderated the panel.

MIT.nano is MIT’s new fabrication facility, and quantum information science represents one of the major thrusts at the Institute that will be enabled by these new facilities.


Tim visits and speaks at QUANTIC | Barcelona, Spain

Grad student, Tim Menke, visited the QUANTIC group, an exciting quantum computing joint venture of several institutes in Barcelona.

He presented his work on inverse design of superconducting circuits at the Catalan Institute of Nanoscience and Nanotechnology and the University of Barcelona. With Pol Forn-Díaz (see picture below), he discussed new circuits for quantum annealing. He also helped with  an experiment that is set to demonstrate the first quantum control of a superconducting qubit in the Mediterranean area.

For more information on Tim’s visit, see the blog post written by the QUANTIC about his visit.


Will teaches in Okinawa | Okinawa, Japan

Will lectured at the Okinawa School in Physics 2018: Coherent Quantum Dynamics (QD2018). The week-long program was held at the Okinawa Institute of Science and Technology Graduate University.


Will speaks at EuMW 2018 | Madrid, Spain

Will gave an invited tutorial on superconducting quantum computing at European Microwave Week 2018.

During the week, Will attended the European Microwave Integrated Circuits Conference, which focuses on high-frequency related topics, including materials, technology, integrated circuits, and applications.


New school year, new members

As EQuS continues to grow, please welcome our newest batch of UROPs (Emma Batson, Manning Chuor, and Francisca Vasconcelos), grad students (Amir Karamlou and Gabriel Samach), and postdoc (Antti Vepsäläinen).


EQuS gets new offices!

After preparing all summer, the offices on the third floor are finally complete! Thank you to RLE’s senior designer, Sampson Wilcox, and Creative Office Pavilion for organizing, designing, and facilitating the renovation of the new spaces.


Jochen joins the group

Please give a warm welcome to Jochen Braumüller, a new postdoc in the group!

After receiving his Ph.D. from Karlsruhe Institute of Technology in 2017 and completing a short postdoc there, he joined MIT to work on novel qubit architectures and alternative approaches to protect and encode quantum information that potentially allow for a more efficient scaling of quantum hardware.


Postdoc Philip leaves EQuS and takes his next steps at WACQT

Best of luck to postdoc, Philip Krantz, as he moves onto a new role as project coordinator at the Wallenberg Centre for Quantum Technology (WACQT) at Chalmers University, beginning June 1st!

The group gathered at Meadhall a few weeks prior to enjoy a farewell dinner celebrating Philip’s three years at MIT.

It’s been a joy having him in the group twice: once as a graduate student (2013) and then again as a postdoc (2015-2018). Thank you, Philip, for your mentorship, dedication, and scientific contributions. He will surely be missed!


Postdocs Fei and Dan’s manuscript, “Distingutishing coherent and thermal photon noise in a circuit quantum electrodynamical system,” published in PRL

Congratulations to postdoctoral associate, Fei Yan, and postdoctoral fellow, Daniel Campbell, on the publication of their paper, “Distinguishing coherent and thermal photon noise in a circuit quantum electrodynamical system” in Physical Review Letters.

All contributing authors: Fei Yan, Dan Campbell, Philip Krantz, Morten Kjaergaard, David Kim, Jonilyn L. Yoder, David Hover, Adam Sears, Andrew J. Kerman, Terry P. Orlando, Simon Gustavsson, William D. Oliver


Bharath is awarded an NDSEG Fellowship

Congratulations to second-year graduate student Bharath Kannan on his National Defense Science and Engineering Graduate (NDSEG) Fellowship!

Effective for three years and funded by the Department of Defense, less than 2% of applicants were awarded this scholarship.

Megan Yamoah, undergraduate student – “High-velocity saturation in graphene encapsulated by hexagonal boron nitride” (B06:3)

Simon Gustavsson, principal research scientist, and Philip Krantz, postdoc, marketing Labber.

Members of EQuS and colleagues from Lincoln Lab enjoying at an annual collaboration dinner.


EQuS goes to March Meeting 2018 | Los Angeles, CA

The EQuS group traveled to Los Angeles, CA in March for the annual APS March Meeting.

Held at the Los Angeles Convention Center, 14 EQuS members gave presentations over the course of the five-day conference.


  1. Andreas Bengtsson, visiting graduate student – “Temporal fluctuations in the coherence parameters of planar single-junction transmons” (X33:1)
  2. Charlotte Bøttcher, graduate student – “Scalable spin-qubit device with a high impedance resonator” (S33:2)
  3. Daniel Campbell, postdoc – “Single-qubit probe of a 1D transmission line modified by two qubit mirrors” (E28:3)
  4. Ami Greene, graduate student – “Qubit feedback on a five-qubit transmon device” (L39:2)
  5. Bharath Kannan, graduate student – “Dissipation-driven entangled state preparation of two qubits coupled to a transmission line” (E28:4)
  6. Niels Jakob Søe Loft, visiting graduate student – “A quantum transistor with superconducting qubits” (F33:6)
  7. Tim Menke, graduate student – “A machine learning approach to superconducting circuit design” (S39:4)
  8. William Oliver, principal investigator – “Progress and Challenges for Engineering Superconducting Qubits” (B05:4)
  9. Yanjie (Jack) Qiu, graduate student – “Squeezed light generation using a Josephson traveling wave parametric amplifier in non-degenerate four wave mixing” (B33:11)
  10. Youngkyu Sung, graduate student – “Non-Gaussian noise spectroscopy with superconducting qubits. Part 2: experiment” (L39:7)
  11. Uwe von Lüpke, visiting graduate student – “An argon ion beam mlling process for native AIOx layers enabling coherent superconducting contacts” (X39:6)
  12. Joel Wang, postdoc – “Gate-tunable transmon qubit made with graphene/hBN heterostructures” (S33:4)
  13. Megan Yamoah, undergraduate student – “High-velocity saturation in graphene encapsulated by hexagonal boron nitride” (B06:3)
  14. Fei Yan, postdoc – “Extensible high-performance two-qubit gate” (A33:11)