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1 Introduction

Superconducting qubits are solid-state artificial atoms, comprising lithographically defined Joseph-
son tunnel junctions and superconducting interconnects [1]. When cooled to milli-Kelvin tem-
peratures, these superconducting circuits exhibit quantized states of flux, charge, or junction
phase depending on design parameters. Such superconducting artificial atoms have already
proven a useful vehicle for advancing the scientific community’s general understanding of co-
herence, quantum mechanics, and atomic physics, particularly in regimes not easily accessible
with natural atoms and molecules. Their potential for lithographic scalability, compatibility
with microwave control, and operability at nanosecond time scales make superconducting qubits
a promising candidate for quantum information science and technology applications.

Spectacular improvement in the capabilities of superconducting qubits over the past decade
has brought these qubits from a scientific curiosity to the threshold of technological reality [2].
Many individual efforts contributed to this improvement, starting with the demonstration of
nanosecond-scale coherence in a Cooper pair box by Nakamura and co-workers [3] in 1999.
In 2002, Vion et al. [4] developed a qubit with T2 coherence time of hundreds of nanosec-
onds based on the concept of design and operation at first-order noise-insensitive bias points.
Burkard et al. [5] elucidated the importance of symmetry in qubit designs, which in conjunction
with Bertet et al. brought persistent-current flux qubit coherence times into the few microsec-
ond range [6]. In 2005-2006, Ithier et al. [7] and Yoshihara et al. [8] measured extensively
the noise properties of superconducting qubits to better understand the sources of decoher-
ence. The ”transmon” qubit developed by Schoelkopf and co-workers significantly reduced
the charge sensitivity of the Cooper pair box, which would later bring microsecond times to
the cavity-QED architecture [9, 10]. The MIT/NEC group increased T2 above 20 µs with a
persistent-current flux qubit in a 2D geometry using dynamical decoupling sequences [11], and
the 3D-cavity approach developed at Yale [12] and now used by several groups has further
increased this time above 100 µs [13] with as-yet unpublished reports above 150 µs. This five-
orders-of-magnitude improvement in the primary single-qubit metric can be justly termed a
“Moore’s Law for quantum coherence” [14], approaching levels required for a certain class of
quantum error correction codes (surface codes) [15, 16, 17]. In addition, the control of single-
[18, 19, 20, 21] and coupled [22, 23] qubits has also advanced, with reports of gate fidelities as
high as 99.85% [21].

In conjunction with these improvements, there have been numerous, increasingly sophis-
ticated demonstrations involving quantum coherence in these systems. A few examples (in an
admittedly incomplete list) include: coherent superpositions of macroscopic states [24, 25, 26],
coherent and Rabi oscillations [3, 4, 27, 28, 29, 30, 31, 32, 33, 34, 35] in multiple qubit
modalities, including a very long-lived (0.2 ms) CPB [36], Landau-Zener transitions [37],
Stueckelberg oscillations [38, 39, 40, 41, 42, 43], microwave cooling [44, 45, 46, 47, 48, 49],
amplitude spectroscopy [50, 51], electromagnetically induced transparency [52, 53] and co-
herent population trapping [54], geometrical phase [55], and cavity quantum electrodynam-
ics [56, 57, 58, 59, 60, 61, 62, 63]. Significant progress has also been made toward their ap-
plication to quantum information science [64, 65, 66], including state initialization [44, 49],
tunable [67, 68, 69, 70, 71, 72] and long-distance [73, 74] coupling, quantum control [75, 76,
77, 78, 79, 80], quantum state [81, 133] and process [83, 84] tomography, randomized bench-
marking [18, 19, 20, 21], measurement [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], archi-
tectures [16, 98, 99], preliminary demonstrations of error correction (without feedback) [100],
and algorithm demonstrations [101, 102].
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Based on these advances, there is a growing motivation to make further improvements
and, indeed, there remains much work to do. The intrinsic and spin-echo T2 times are gener-
ally not T1-limited (i.e., T2 < 2T1) in the longest-lived samples (although exceptions do exist,
e.g., Ref. [11]). Inhomogeneous dephasing arises from low-frequency (e.g., 1/f -type) noise,
although its microscopic origin is not yet well understood. The limiting source(s) of energy
relaxation also remain unclear. Ideally, coherence times should be made as high as possible, as
exceeding quantum error correction (QEC) thresholds reduces considerably their resource re-
quirements. There is a general consensus within the community that understanding and mitigat-
ing sources of decoherence in superconducting qubits is one key that will enable more-advanced
circuits and systems engineering [1].

In this light, these lecture notes serve to provide an admittedly brief overview of super-
conducting qubits with a focus on:

• survey of junctions and qubits

• noise spectroscopy and decoherence mitigation

• single qubit control.

We have made an effort to include relevant references so that interested readers can follow up
on specific topics in more detail. Of course, in doing so, we have most certainly missed topics
and references that deserve to be included. We also err on the side of presenting our own work a
bit too much. While this can be somewhat annoying to readers, particularly to those who work
in this field and are familiar with the broad range of excellent works available, our intent is to
present experiments with an authority that comes from first-hand experience and not necessarily
to ascribe to them a special status. In this spirit, we hope the reader finds this review useful.

2 Survey of Josephson junctions and superconducting qubit
modalities

2.1 Josephson junctions
2.1.1 Josephson equations

We begin this section with a review of the Josephson junction, the elemental building block of
superconducting qubits. The Josephson junction is formed by two superconducting electrodes
separated by an insulating tunnel barrier [103, 104, 105, 106]. It is described by two constituent
Josephson equations.

A supercurrent flows through the device, even in the absence of a voltage, due to Joe-
sphson tunneling. The value of the supercurrent is determined by the phase difference between
the superconducting order parameters of the two electrodes according to the first Josephson
equation,

I = Ic sinφ (1)

where Ic is the critical current of the junction and φ is the phase difference across it. The critical
current is related to the superconducting gap of the electrode materials as well as the type and
thickness of the insulating barrier. It is often characterized by a critical current density Jc and
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the area A of the junction such that Ic = Jc × A. The second Josephson equation relates the
time evolution of the phase to the voltage drop across the junction;

V =
Φ0

2π

dφ

dt
(2)

where Φ0 ≡ h/2e is the superconducting flux quantum with value,

Φ0 = 2.07× 10−15 Wb = 2.07 mA · pH = 2.07 mV · ps. (3)

Importantly for superconducting qubits, the Josephson junction exhibits a dynamic induc-
tance inductance LJ that is nonlinear in the junction phase. Using the relation V = LJdI/dt
with Eqs. 1 and 2, the standard definition for the Josephson inductance is:

LJ =
Φ0

2πIc cosφ
=

Φ0

2π(I2
c − I2)1/2

=
Φ0

2πIc(1− γ2)1/2
≡ LJ0

(1− γ2)1/2
, (4)

where γ ≡ I/Ic is the reduced current, LJ0 is the inductance at I = 0, and I < Ic is assumed.
The inductance increases with current I and diverges as I → Ic. An alternative definition that
includes the time dependence of the inductance, V = d [LJI] /dt, and does not diverge is given
in Ref. [91]. In the I → 0 limit, these two definitions both give LJ0.

For completeness, if the junction is biased with a constant voltage then the current will
oscillate according to the relation (using Eqs. 1 and 2),

I = Ic sin

(
φ0 +

2π

Φ0

V t

)
(5)

with a frequency-to-voltage factor 483.6 MHz/µV . In turn, a transient fluctuation of the current
through the junction will transiently change the phase creating a transient voltage fluctuation
across the junction.

2.1.2 RCSJ model

A “short” Josephson junction may be modeled using the “resistively- and capacitively shunted
junction” (RCSJ) model (the Stewart-McCumber model [107, 108]). It is sometimes just called
the RSJ model. Here, “short” means that the junction is smaller than the typical length scale
of variations in the Josephson phase (the size of a Josephson vortex), around 10 − 30 µm for
typical qubit materials [109]; qubit junctions tend to be much smaller than this. Within this
model, the junction itself is an element that obeys Eqs. 1 and 2, in parallel with a capacitor
(essentially a parallel plate capacitor due to the electrodes and tunneling barrier) and a resistor
which models the intrinsic loss of the junction. When the junction is in its normal state (I > Ic),
the Josphson element is omitted and the junction resistance is the normal tunneling resistance
Rn. This resistance can be related to Ic through the Ambegaokar-Baratoff relation [110],

π

4
Vgap(Θ) =

π

4

2∆(Θ)

e
= IcRn (6)

where Vgap = 2∆/e is the total gap voltage for a Cooper pair, ∆ is the temperature-dependent
superconducting gap and Θ is temperature. For currents less than Ic, the resistance is the “sub-
gap resistance” Rsg, which is explicitly manifest in the hysteretic I − V trace of a junction.
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Fig. 1: A) RCSJ model for a Josephson junction. The X indicates the junction with critical cur-
rent Ic, in parallel with a capacitor C and resistor R which damps the junction. B) Equivalent
circuit using the “boxed-X” to represent the junction and its capacitance. C) Equivalent circuit
that replaces the junction with an inductor that has the value of the Josephson inductance. The
parallel combination is a resonant circuit oscillating at the plasma frequency. D) Washboard
potential U for several values of reduced current γ. This potential represents the dynamics of
the RCSJ model. For γ = 0, the “phase particle” representing the junction state is trapped in a
well and oscillates at the plasma frequency. As γ is increased, the potential tilts. As γ → 1, the
phase particle may diffuse around the washboard, being occasionally retrapped by the damp-
ing. While φ is changing with time, a voltage exists across the junction. For γ > 1, the particle
runs down the washboard, and the junction is manifestly in the normal state. E) Phase particle
in a single well at γ = 0.5. The particle may escape the well due to thermal activation over the
barrier with a rate ΓTA, or due to quantum tunneling through the well with a rate ΓQ.
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Ideally, a major component of the subgap resistance is due to equilibrium quasiparticles with
resistance Rqp = Rn exp[∆/kBΘ]. In practice, at the 10− 100 mK temperatures used for super-
conducting qubits, the apparent losses are higher (e.g., excess non-equilibrium quasiparticles)
and the RCSJ model resistance may be used to parameterize the observed loss.

The circuit equation for the RCSJ model is obtained by summing the current along the
three parallel paths (element, capacitor, and resistor),

I = Ic sinφ+
V

R
+ C

dV

dt
(7)

= Ic sinφ+
1

R

Φ0

2π
φ̇+ C

Φ0

2π
φ̈ (8)

where the “dot” indicates time derivative. Bringing the current I over to the right side casts the
equation in the form of a particle with “mass” m ≡ C(Φ0/2π)2 in a tilted washboard potential
U(φ),

0 =
∂U(φ)

∂φ
+m

1

RC
φ̇+mφ̈ (9)

where the potiential U(φ) is

U(φ) = EJ (−γφ− cosφ) , (10)

and we have defined the Josephson energy EJ ≡ IcΦ0/2π.
These equations describe a particle with mass m in a washboard potential that can be

tilted by applying a current γ. If the well is not tipped too much, the particle remains in a single
well. For small oscillations, the particle oscillates with a finite-bias plasma frequency ωp related
to the curvature of the potential,

ωp =

√
1

m

d2U(φ)

dφ2
=

1√
LJC

= ωp0(1− γ2)1/4 (11)

ωp0 =
1√
LJ0C

(12)

where ωp0 is the zero-bias, Josephson plasma frequency, defined in terms of the I = 0 Josephson
inductance LJ0 and the capacitance C. If the well is tilted too much, the particle will escape
and start “running” down the washboard. A voltage develops across the junction, related to the
temporal change in φ associated with the moving particle. There is also a damping term in Eq. 9
proportional to the phase velocity with a “viscous damping” coefficient m/RC. The dampling
acts to localize the particle in a well such that, for moderate tilting, the particle may diffuse
around the washboard, occasionally being retrapped by the damping.

2.1.3 Thermal activation

In the thermal regime (kBΘ � ~ωp), the rate at which a particle escapes from a well is related
to thermal activation over the potential barrier ∆U ,

∆U = U(φmax)− U(φmin)

= 2EJ

[√
1− γ2 − γ arccos(γ)

]
≈ EJ

4
√

(2)

3
(1− γ)3/2 (13)
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where φmax = π − arcsin(γ) is the phase at the local maximum of the potential, φmin =
arcsin(γ) is the phase at a local minimum of a well, and the approximation holds for currents
approaching the critical current, γ → 1 [109, 113].

In the presence of Ohmic damping [111], the escape rate is

ΓTA = at
ω0

2π
e
− ∆U

kBΘ (14)

which contains the usual Arrhenius factor exp(−∆U/kBΘ), an “attempt rate” to escape ω0/2π,
and a prefactor at that incorporates the effect of damping [112],

at =
4a

[(1 +QkBΘ/1.8∆U)1/2]
1/4

(15)

and contains the junction quality factor Q = ωpRC [113, 114, 115, 116]. Higher Q values
correspond to lower damping.

2.1.4 Macroscopic quantum tunneling

The presence of a potential well raises the question, “Does a Josephson junction degree of
freedom (the phase) exhibit quantum mechanical behavior?” In a series of papers foundational
to the field of superconducting qubits, Clarke, Devoret, Esteve, and Martinis demonstrated that
a junction indeed exhibits quantum mechanical tunneling through the junction’s washboard
potential barrier in addition to thermal activation over the barrier [113, 114, 115, 116].

The escape rate ΓTA due to thermal activation has the property that it should go to zero
as temperature is decreased to zero due to the Arrhenius factor exp(−∆U/kBΘ). However,
quantum tunneling provides another means of escape which becomes dominant and saturates
the total escape rate at low temperatures. In the quantum regime (kBΘ� ~ωp), to lowest order
in 1/Q, the quantum tunneling rate at zero temperature is

ΓQ =
aqωp

2π
e

[
− 7.2∆U

~ωp
(1+ 0.87

Q )
]

(16)

where aq ≈ [120π(7.2∆U/~ωp)]1/2 [115]. Dissipation suppresses quantum tunneling through
the factor 1/Q, and so a signature of quantum tunneling is one indication that Josephson junc-
tions can have low dissipation.

Conceptually, the escape rate is measured at a particular current I < Ic while the junction
is in the zero-voltage state, and then this current is stepped to find the escape rate for different
barrier heights. In practice, the escape-rate measurements can be implemented by a different
means: ramping the current through the junction at a rate slow compared with the other rates in
the problem. One then records the current (or, equivalently, the time from the start of a linear
current ramp) at which the junction switches to the normal state. Note that this current is prop-
erly called the “switching current” and not the “critical current,” because thermal or quantum
escape mechanisms will generally act before the critical current is reached. This experiment is
repeated many times (typically thousands) to build up the switching-current distribution, from
which the escape rate can be calculated [117]. The escape rate measurement is repeated as a
function of the junction’s ambient temperature, and the rate was shown to saturate at a particular
“escape temperature” as the ambient temperature was reduced, an observation consistent with
a quantum tunneling picture [115, 116]. For details related to these experiments, the reader is
directed to the cited references and the references therein.
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2.2 DC SQUID: a tunable junction

The DC SQUID (superconducting quantum interference device) is a superconducting loop inter-
rupted by two junctions [118]. The net critical current of the SQUID can be tuned by threading
a magnetic flux through the loop. In this sense, the SQUID is a tunable Josephson junction,
and this feature is used to make “tunable” superconducting qubits, i.e., qubits with a parameter
related to the junction Ic that is tunable by the magnetic field that threads the SQUID loop.

2.2.1 DC SQUID equations

A SQUID is a superconducting loop interrupted by two junctions, as illustrated in Fig. 2A. A
current I flows into the SQUID, and subsequently separates into two currents Ij in the branches
(“arms”) j = 1, 2. In each arm of the SQUID, there is a Josephson junction with critical
current Icj , phase φj , and Josephson inductance LJj (not illustrated). There is also in general a
geometric inductance Lj in each arm. The total inductance around the loop is L. The current
passing through branch j is given by the Josephson current equation (Eq. 1), such that the total
current is

I = Ic1 sinφ1 + Ic2 sinφ2. (17)

Alternatively, one may transform into a basis of symmetric (Ip) and antisymmetric (circulating
current, Im) currents:

Ip =
I1 + I2

2
(18)

Im =
I1 − I2

2
(19)

I = 2Ip. (20)

Note that only Im is illustrated in Fig. 2A.
An external magnetic field Bext is applied to the SQUID, and it contributes a flux Φext to

the loop, illustrated in Fig. 2B. The superconducting order parameter must be single valued,
and this requirement imposes a quantization condition: the total phase difference around the
loop must quantized in units of the flux quantum Φ0. This comprises a normalized superpo-
sition of the externally applied flux, a screening flux due to the SQUID current and geometric
inductances, and the Josephson junctions. This condition may be expressed as,

2πn =
2π

Φ0

∮
C

( ~A+ Λ ~Js) · d~l =

∮
C

∇φ · d~l

2πn = φ2 + βL2 sinφ2 − φ1 − βL1 sinφ1 − φext (21)

where n is the number of flux quanta Φ0, βL1, L2 ≡ L1,2/LJ1, J2 are the ratios of the geometric
inductance to the Josephson inductance for arms 1 and 2, βL1, L2 sinφ1, 2 are the flux contribu-
tions due to current passing through the geometric inductances L1, 2 normalized by Φ0/2π, and
φext = 2πΦext/Φ0 is the external flux normalized by Φ0/2π. Note that we have chosen a path
in the center of the superconductor where the current ~Js is negligible. This means that we have
assumed the kinetic inductance contribution, related to Λ ~Js, is negligible (see Ref. [104]).
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XX .

I

I

I2I1
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Φext

L2L1

A) B)

X

I

Ic,SQ (Φext)

equivalent junction
(L1=L2=0, sym. SQUID)

JJ2JJ1

Fig. 2: A) Circuit diagram of a SQUID. Current I enters and leaves the SQUID. The current
Ij flows through branch j = 1, 2 with arm inductance Lj and a Josephson junction with phase
critical current Icj , phase φj , capacitance Cj , and damping resistor Rj . An external magnetic
field Bext threads a flux Φext through the loop. A circulating current Im develops in response to
the applied flux. B) Equivalent Josephson junction with a critical current tuned by the external
flux Φext. The inductances are taken to be zero, and the equivalence is precise for symmetric
SQUID junctions.

2.2.2 Zero-inductance case, Ic1 = Ic2

If the SQUID arm inductances are small compared with the Josephson inductancs, then the
ratios βL1, L2 are negligible and can be dropped from Eq. 21. The equations for the SQUID
current are:

I = Ic1 sinφ1 + Ic2 sinφ2 (22)
2πn = φ2 − φ1 − φext. (23)

Furthermore, if one assumes the critical currents are equal, Ic1 = Ic2 ≡ Ic, then these equations
can be combine to yeild

I = 2Ic cos

(
φext

2

)
sin

(
φ1 +

φext

2

)
. (24)

The extrema occur for dI/dφ1 = 0, which leads to the relation (in terms of Φext)

Ic,SQ(Φext) = 2Ic

∣∣∣∣cos

(
πΦext

Φ0

)∣∣∣∣ . (25)

The critical current of the SQUID Ic,SQ is a function of the externally applied flux. As we show
in Section 2.2.5, one may view the SQUID in Fig. 2A as a single junction with critical current
given by Eq. 25, and a corresponding Josephson inductance that is now a function of both the
current I and the SQUID flux Φext (Fig. 2B). The critical current can be tuned between 0 and
2Ic.
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2.2.3 Zero-inductance case, Ic1 6= Ic2

In the case that the junctions have different areas and/or different critical current densities, their
critical currents will not be identical. In this case, the critical currents can be tuned with the flux
by the following expression (see Ref. [103] for a clever derivation),

Ic,SQ(Φext) =

[
I2

c1 + I2
c2 + 2Ic1Ic2 cos

(
2πΦext

Φ0

)]1/2

(26)

The form of Eq. 26 is indicative of an interference effect, and it will oscillate as a function of
Φext between a maximum |Ic1 + Ic2| and a minimum |Ic1− Ic2|. It reduces to Eq. 25 in the limit
Ic1 = Ic2.

2.2.4 Non-zero inductance case

The non-zero inductance case can be solved numerically (see Ref. [103] for an example using
Lagrange multipliers to incorporate the quantization constraint). For a symmetric SQUID (Ic1 =
Ic2 and L1 = L2), the SQUID critical current Ic,SQ(Φext) modulates between its full value
2Ic and a non-zero minimum value Ic,min that increases as the total inductance increases. For
differing inductances (L1 6= L2), the SQUID critical current Ic,SQ(Φext) becomes distorted
with flux and is no longer symmetric about Φext = 2πn. One consequence is that the SQUID
critical current will not be at its maximum value for Φext = 0. A similar asymmetry is used
for convenience in the phase-qubit SQUID readout to obtain dIc,SQ/dΦext 6= 0 sensitivity to an
external magnetic field in the absence of a static bias, Φext = 0.

2.2.5 Equivalence to a Josephson junction

The formal equivalence between the SQUID (Fig. 2A) and a Josephson junction (Fig. 2B) can
be clarified by writing the equation of motion for the SQUID while allowing for variations in
component values. We adopt the following parameterization:

V ≡ V1 + V2

2
(27)

∆V ≡ V1 − V2

2
, (28)

in which V1,2 represents any pair of components, e.g., the RCSJ critical currents, resistances,
and capacitances. Using these definitions, one may write,

Ic1 = Ic + ∆Ic Ic2 = Ic −∆Ic (29)
G1 = G+ ∆G G2 = G−∆G (30)
C1 = C + ∆C C2 = C −∆C (31)

where we have defined the normal-state conductances G1,2 ≡ 1/R1,2 corresponding to the
normal-state resistances R1,2. We take the inductances in Fig. 2A to be zero to show the equiv-
alence.

Following the approach of Section 2.1.2, current conservation yields the following equa-
tions for the SQUID current:

I = I1 + I2 = Ic1 sinφ1 +G1
Φ0

2π
φ̇1 + C1

Φ0

2π
φ̈1 + Ic2 sinφ2 +G2

Φ0

2π
φ̇2 + C2

Φ0

2π
φ̈2. (32)
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Using the Eq. 27 and Eq. 28, one may write,

I = I0 + ∆I (33)

= Ic (sinφ1 + sinφ2) +G
Φ0

2π

(
φ̇1 + φ̇2

)
+ C

Φ0

2π

(
φ̈1 + φ̈2

)
+ ∆Ic (sinφ1 − sinφ2) + ∆G

Φ0

2π

(
φ̇1 − φ̇2

)
+ ∆C

Φ0

2π

(
φ̈1 − φ̈2

)
, (34)

in which I0 is the expression assuming all parameters are symmetric between the left and right
arms, and ∆I is the expression that accounts for asymmetries in the SQUID parameters. No
approximations have been made, and the expression is exact within the RCSJ model. Using the
trigonometric identities,

sinφ1 + sinφ2 = 2 cos

(
φ1 − φ2

2

)
sin

(
φ1 + φ2

2

)
≡ 2 cosφm sinφp (35)

sinφ1 − sinφ2 = 2 cos

(
φ1 + φ2

2

)
sin

(
φ1 − φ2

2

)
≡ 2 cosφp sinφm, (36)

where φp,m ≡ (φ1 ± φ2)/2 are symmetric and antisymmetric phases of the SQUID, the expres-
sion for the SQUID current becomes

I0 = 2Ic cosφm sinφp + 2G
Φ0

2π
φ̇p + 2C

Φ0

2π
φ̈p (37)

∆I = 2∆Ic cosφp sinφm + 2∆G
Φ0

2π
φ̇m + 2∆C

Φ0

2π
φ̈m. (38)

The equation of motion for a symmetric SQUID (Eq. 37) is equivalent to Eq. 8 with the substitu-
tions in Table 1. The last substitution in Table 1 follows from the assumption of zero-inductance

Josephson junction DC SQUID
G = 1/R 2G = 2/R

C 2C

φ φp

Ic 2Ic cosφm = 2Ic cos
(
πΦext

Φ0

)
Table 1: Corresponding paramters between a Josephson junction and its DC SQUID equiva-
lent.

and fluxoid quantization (Eq. 23) with n = 0. By construction we have restricted the range
πΦext/Φ0 ∈ (−π/2, π/2), although this may be generalized by taking | cos(πΦext/Φ0)|. The
resistance and capacitance substitutions follow from their parallel combination in the SQUID,
again, in the absence of SQUID inductances. Defining Ic,SQ = 2Ic| cos(πΦext/Φ0)|, the current
through the SQUID is

I = Ic,SQ sinφp (39)

which is the first Josephson equation. The circulating current of the SQUID can similarly be
related to sinφm. It is interesting to note that the corrections to this ideal equivalence swaps the
roles of φp and φm. The correction dynamics are governed by the circulating current.
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2.3 Superconducting qubits
In this section, we review the basic construction and operation of superconducting qubits. We
will focus on “first-generation” qubits, including the charge, quantronium, persistent-current
flux qubit, and phase qubits. We will also discuss briefly the “next-generation” qubits, including
their evolution from the first-generation, their similarities, and their differences. Our goal here
is to provide a high-level overview, including the Hamiltonian and the fundamentals of their
operation. We refer the readers to the original proposals and experimental papers for more
details.

In the following, we will define the charging energy in terms of the single-electron charg-
ing energy EC ≡ e2/2C [121]. This means that a superconducting Cooper pair has charging
energy 4EC. On the other hand, we will define the Josephson energy EJ ≡ IcΦ0/2π in terms
of the superconducting flux quantum Φ0 = h/2e. This follows a somewhat general convention,
although it is certainly not a universal one.

2.3.1 Charge qubit

The charge qubit was among the first superconducting devices to demonstrate properties of
quantum coherence, including evidence for quantum superposition of charge states [122, 123,
124, 125]. It was also the first superconducting circuit used to demonstrate coherent control and
temporal oscillations [3].

The charge qubit is a Cooper pair box (CPB) (Fig. 3A), comprising a small superconduct-
ing island isolated by a Josephson junction and a capacitor to ground. The key feature of this
island is that it is sufficiently small that the charging energy required to add a single Cooper pair
to the island is much larger than the thermal energy at the milliKelvin temperatures of a dilution
refrigerator,

4EC = 4
e2

2CΣ

� kBΘ (40)

where the capacitance CΣ = CJ + Cg is the total capacitance and generally must be less than 1
fF. The amount of charge on the island that is induced by the gate, expressed in units of extra
Cooper pairs,

ng =
CgVg

2e
(41)

is controlled by the voltage source Vg. Although the Cooper pairs themselves are counted in
discrete units, this reduced charge is continuous, because it is related to the polarization charge
on the capacitor. Therefore, ng is continuously tunable from n to n+ 1. The source of discrete
island Cooper pairs is the junction itself via Josephson tunneling with Josephson energy EJ.
In the CPB, EC � EJ (or, at most, of order unity), and so the number of Cooper pairs on the
island is a well-defined (localized) variable. The operator n̂ will count the number of Cooper
pairs that have tunneled on/off the island,

n̂|n〉 = n|n〉 (42)

and the classical (diabatic) states of the device are the charge states |n〉 and |n+1〉. The operator
n̂ is conjugate to the Josephson phase operator (the phase difference across a junction),

φ̂|φ〉 = φ|φ〉. (43)
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Fig. 3: Cooper Pair Box (CPB) and its derivatives. A) Circuit diagram of a single-junction
CPB. The number of extra Cooper pairs on the island, ng, is controlled by the gate voltage Vg.
The charge ng is continuous, not discrete units of 2e, because it is related to the polarization
charge on the capacitor Cg. Tuning ng changes the electrostatic energy of the CPB by changing
the amount of charge on the island subject to the charging energy Ec. B) Split-junction CPB.
A flux Φext tunes the critical current of the effective junction formed by the SQUID, thereby
tuning the Josephson energy EJ. C) Transmon: a capacitively shunted CPB. Adding a large
parallel capacitor to the CPB flattens the energy levels and makes the CPB much less sensitive
to charge fluctuations. The transmon may be realized as either a single junction (not shown) or
a split-junction. D) Energy level diagram for the CPB within the two-level system approxima-
tion. The dashed lines are the classical charge states (diabatic energy levels). The solid lines
are the eigenenergy levels that include Josephson coupling, which opens an avoided crossing
of value EJ. At the avoided crossing, the CPB is first-order insensitive to fluctuations in the
charge. E) Multi-level energy diagram for the full CPB Hamiltonian assuming different values
for the ratio EJ/EC. As the ratio increases, the energy levels flatten and become less sensitive
to charge. EJ/EC = 1 is the CPB limit; EJ/EC = 50 is the transmon limit. F) Probability of
measuring 0 (red) or 1 (blue) Cooper pairs on the island using an SET readout. The probability
is estimated by repeatedly measuring an identically prepared CPB. At the avoided crossing, the
readout cannot distinguish the two classical states since 〈ng〉 = 0.5. G) Simplified schematic
for the readout of the CPB using a single-electron transistor (SET) operated in the DC trans-
port regime, or as a resonant circuit (RF-SET). The CPB state modifies the SET island charge
through the coupling capacitor Cc, which modifies the DC current flowing through the island
(drain-source current). Alternatively , it modifies the impedance seen by the RF source.
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See Appendix A for a brief review of their properties.
The CPB Hamiltonian is a sum of two terms,

ĤCPB = 4EC(n̂− ng)2 + EJ(1− cos φ̂) (44)

→ 4EC(n̂− ng)2 − EJ cos φ̂ (45)

where the second line removes the static offset energyEJ, but is otherwise equivalent to the first
line. The first term is the electrostatic energy, which is related to the island charge. The electro-
static energy levels plotted versus ng are parabolae, each associated with a discrete Cooper pair
state n = 0, 1, . . . with minima that occurs at the respective value n (see Fig. 3E, EJ/EC = 1).
Tuning the gate voltage will increase the energy parabolically away from these minima. When
the island charage reaches n + 1/2, the energy levels of the parabolae associated with charge
states |n〉 and |n + 1〉 are degenerate. Josephson tunneling between n and n + 1 Cooper pairs
on the island mixes these states and opens an avoided crossing with a strength dictated by the
Josephson energy. This is the second term of the Hamiltonian, and it is the junction energy
written in the phase basis. The mixing of charge states is elucidated by writing the Hamiltonian
in the charge basis (see Appendix A),

ĤCPB =
∑
n

[
4EC(n̂− ng)2|n〉〈n| − EJ

2
(|n〉〈n+ 1|+ |n+ 1〉〈n|)

]
. (46)

Alternatively, in the phase basis, the Hamiltonian is

ĤCPB = 4EC

(
1

i

∂

∂φ̂
− ng

)2

− EJ cos φ̂ (47)

The choice of representation is one of convenience, depending on what is being calculated. For
example, the formal solutions to the Schrödinger equation in the phase basis are written in terms
of Mathieu functions [197].

The CPB can have both a tunable gate charge ng and a tunable splitting EJ at the avoided
crossing by replacing the junction in Fig. 3A with a SQUID as shown in Fig. 3B. In this case,
the Josephson energy is a function of the external magnetic field applied to the SQUID loop,

ĤCPB,SQ = 4EC(n̂− ng)2 − EJ(Φext) cos φ̂ (48)

EJ(Φext) = EJ,max

∣∣∣∣cos

(
πΦext

Φ0

)∣∣∣∣ (49)

where we have assumed a symmetric SQUID and EJ,max = EJ1 + EJ2.
The CPB can be written within a two-level system approximation by expanding the

Hamiltonian about the charge degeneracy point at ng = 1/2, taking the charge states to be
|0〉 and |1〉,

ĤTLS
CPB = −1

2
[4EC(1− 2ng)σ̂x + EJ(Φext)σ̂z] (50)

≡ −~
2

[εσ̂x + ∆σ̂z] (51)

where σ̂x,z are the Pauli spin matrices (see Fig. 3D), and we have made the association,

~ε = 4EC(1− 2ng) (52)
~∆ = EJ(Φext) (53)



A4.16 William D. Oliver

Although this Hamiltonian is often written with σ̂x and σ̂z switched, we have chosen this rep-
resentation so that this Hamiltonian is diagonalized (qubit along z) when biased at ng = 1/2.
This conforms with our usage in Section 3. At ng = 1/2, the eigenstsates are σz and the energy
levels are first-order insensitive to charge noise. Away from ng = 1/2, the eigenstates are σx-
like, and the energy levels become sensitive to charge fluctuations due to there non-zero slope.
The CPB is read out using a single-electron transistor (SET) operated as a sensitive charge elec-
trometer (Fig. 3G). The SET is a superconducting island isolated by two junctions, similar to
the CPB. The “drain” and “source” of the SET are the junction electrodes that connect to the
island. When the SET is biased near a charge degeneracy point (ng = n+1/2), current can flow
from drain to source with a value that depends strongly on the gate-source voltage Vgs. The CPB
island is coupled capacitively to the island and modifies the SET gate charge depending on the
state of the CPB. The voltage Vgs sets a bias point such that there is a maximal change in drain-
source current between the CPB states |0〉 and |1〉. The probability of detecting states |0〉 and
|1〉 as a function of the CPB ng is illustrated in Fig. 3F. Note that at the CPB charge-degeneracy
point (ng = 1/2), the SET cannot distinguish between |0〉 and |1〉, because their probabilities
of detection are equally likely. This results from the fact that |0〉 and |1〉 are classical (diabatic)
charges states that are mixed into an equal superposition state at the avoided crossing due to EJ

coupling.
The DC-SET readout is generally dissipative, because the small junctions experience

phase diffusion during the readout. Another approach is to use a resonant circuit that involves
the SET biased solidly in its superconducting state. In this RF-SET approach [85], an RF pulse
near resonance with this circuit is applied to the SET and is reflected back through a circulator
to an amplifier (see Fig. 3G). The CPB state modifies the SET impedance which, in turn, modi-
fies the reflected phase of the RF signal sent to the SET. The RF-SET is a much faster approach
to readout, and it is less dissipative than its DC counterpart.

2.3.2 Quantronium

An early design modification to the CPB was the quantronium [4] qubit (Fig.4A). Quantronium
was the first qubit to demonstrate the use of the charge degeneracy point operation to mitigate
low-frequency fluctuation and thereby extend dephasing times. To measure the state of the
qubit while remaining at the charge degeneracy point, a large junction was added in parallel
to the CPB forming a loop. Flux through this loop controlled an additional degree of freedom
and, thereby, a new noise channel. However, the energy along this flux dimension also had a
degeneracy point. The qubit was operated at this “double” charge-flux degeneracy point, and
was thereby made insensitive to both charge and flux noise to first order. Dephasing times of
around 500 ns were enabled by this approach, a 10x-100x improvement at the time [4].

Readout was performed by shifting the qubit away from the flux degeneracy point. In
doing so, the qubit state was mapped onto circulating currents around the CPB-JJ loop. In the
original work [4], a switching-current approach was used. A current pulse was applied to the
loop close to the switching current of the large JJ. The exact value of the switching current
was modified by state of the CPB; by choosing an appropriate current bias, the junction would
switch for one state and not the other. By monitoring the presence or absence of a voltage pulse
over several trials, one estimates the state occupation probability. The parallel capacitor in this
approach acts as a “mass” to reduce phase fluctuations of the large junction and, thereby, narrow
the switching-current distribution.

An alternative approach that does not rely on switching is to view the Josephson induc-
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Fig. 4: Quantronium and transmon qubit readout A) Quantonium circuit is a CPB with a
large junction in parallel. The circuit has two degeneracy points: one charge and one flux due
to the CPB-JJ loop. To read out quantronium, a flux pulse shifts the qubit away from the flux
degeneracy point, and the qubit state corresponds to circulating currents clockwise or counter
clockwise. The switching-current readout method sends a current pulse IRO through the CPB-JJ
circuit and monitors the voltage VROfrom a state-dependent switching event. In the RF version
of the readout, the large JJ and a parallel capacitor resonate at a frequency far detuned from the
qubit (e.g., 1.5 GHz in Ref. [181]), and the state-dependent CPB inductance shifts this resonant
frequency. An RF pulse near resonance probes the circuit, and its reflection carries a state-
dependent amplitude and phase. Figure adapted from Refs. [4, 181] B) Transmon coupled to
a coplanar transmission line resonator, modeled in the circuit schematic as a lumped element
resonator. In the dispersive limit, g � ∆, an RF pulse probes the transmon-state-dependent
resonance frequency and phase of the coplanar resonator. Adapted from Ref. [9].
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tance LJ of the large JJ and its parallel capacitance C as a lumped-element resonant circuit with
resonance frequency ν ≈ 1.5 GHz. The CPB itself has a state-dependent inductance which
serves to modify the resonance frequency. By probing this resonator with an RF pulse and
monitoring the frequency and/or phase of the reflected pulse, the qubit state is determined. The
advantage here is three fold. First, the junctions need not switch and so there is much less
dissipation using this approach. Second, the readout can be implemented much more quickly,
because one does not need to wait for quasiparticle relaxation to repeat the experiment. And,
third, the resonator itself is nonlinear and, at higher amplitudes, can be operated as a Josephson
bifurcation amplifier (nonlinear readout) [86, 88, 89]. One potential disadvantage is that the
qubit dephasing may occur due to photon number fluctuations in the resonator.

2.3.3 Transmon

The transmon and its readout will be covered in detail within another lecture in this series. Here,
we provide a brief overview for completeness and to make the historical connection with the
CPB.

The CPB is sensitive to 1/f charge noise fluctuations due to its energy dispersion. Even
with the first-order insensitivity afforded at the degeneracy point, charge offsets due to nearby
charge fluctuators severely impact the operation of the CPB. A solution to remedy this problem
was offered in Ref. [9], which introduced the transmon. The transmon is essentially a CPB with
a large capacitor in parallel (Fig. 3C). The capacitor acts to flatten the energy level dispersion
by increasing the EJ/EC ratio (Fig. 3E). Typical values for transmons are EJ/EC = 50 . . . 80.
As a consequence, as compared to the conventional CPB, the transmon is much less sensitive
to low-frequency charge noise and therefore has dramatically improved dephasing times. Aside
from the different regime of parameters, the transmon Hamiltonian and its solutions have the
same form as the CPB.

Because the transmon has relatively small charge dispersion, there is a negligibly small
charge signature of the transmon states and a different approach to readout is required. By
strongly coupling the qubit transversally to a resonator (either lumped element resonator, 2D
distributed waveguide resonator, or a 3D cavity), one realizes essentially a Jaynes-Cummings
Hamiltonian (see Fig. 4B),

ĤJC = 4EC(n̂− ng)2 − EJ(Φext) cos φ̂+ ~ωrâ
†â+ ~gn̂(â+ â†) (54)

where â† and â are creation and annihilation operators of the resonator field, the third term is
the energy of the resonator field, the fourth term is the coupling between the transmon and the
resonator, and global energy offsets have been dropped. The prefactor g is the coupling strength
between the transmon and the resonator, and g = 2βeV 0

rms for a coplanar waveguide, with V 0
rms

the zero-point voltage of the cavity and β a voltage division ratio which is a function in terms
of the capacitances in the circuit and acts to scale the coupling to the transmon. Within the
two-level approximation for the transmon, the Hamiltonian is,

ĤTLS
JC = ~ωrâ

†â+
~ωq

2
σ̂z′ + ~gσ̂x′(â+ â†) (55)

where the transmon portion of the Hamiltonian is written in its eigenbasis, as denoted by the
prime notation on the σ̂z′,x′ operators. It has been demonstrated that superconducting circuits
can operate within the strong-coupling regime g � γ, κ, where the coupling g is much larger
than the decay rates of either the cavity, κ, or the transmon, γ.
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In addition to enabling numerous beautiful cavity QED demonstrations with supercon-
ducting circuits, the Jaynes-Cummings-type Hamiltonian and its use of a strong, transverse
coupling between the transmon and the resonator enables the readout of the transmon without
the need for classical charge sensitivity. The readout is performed dispersively, by detuning the
cavity frequency from the qubit frequency. This is a necessary operating condition in general,
not just for readout, because the Purcell effect would otherwise enhance the decay rate of an
atom (or qubit) resonantly coupled to a cavity field [10]. In the dispersive limit, the detun-
ing ∆ = ωq − ωr is larger than the coupling,

√
ng � ∆. In this limit, the Hamiltonian can

be expanded to second order in g/∆ [9] to yield the following dispersive, two-level system
Hamiltonian,

ĤTLS
disp−JC =

~(ωq + χ)

2
σ̂z′ + ~(ωr + χσ̂z′)â

†â, (56)

in which the original transverse coupling of the Jaynes-Cummings Hamiltonian is now manifest
as a dispersive shift χ. The qubit frequency experiences a Lamb shift ωq + χ, and the resonator
frequency experiences a transmon-state-dependent shift, ωr ± χ, where χ = g2/∆ and we have
ignored the shifts due to states outside the two-level manifold [9].

The primary trade-off made with the transmon is that the anharmonicity

α =
E12

E01

− 1 (57)

of the CPB has been dramatically reduced. In effect, by adding the capacitor, the CPB has
come much closer to a harmonic oscillator (α = 0). For the transmon, anharmonicities around
α = −0.1 are typical. This can be compared with the CPB anharmonicity typically around
α = 5. This is not catastrophic, obviously, given the success of the transmon, but it does
carry implications for quantum control. To limit excitations to the two-level system manifold
(and not simultaneously excite higher states), one must generally apply longer pulses. Longer
temporal pulses correspond to narrower spectral width in the frequency domain; by lengthening
the pulses, one can avoid off-resonantly driving nearby transitions. Another approach is to
compensate the unwanted, off-resonance transitions with control methods [126].

2.3.4 Persistent-current flux qubit

The persistent-current flux qubit is a superconducting loop interrupted by three (Fig. 5A) or four
(not shown) Josephson junctions. One the the junctions is smaller in area by a factor α, with
a typical value α = 0.75 for the three-junction qubit and α = 0.5 for the four-junction qubit.
In this section, we will focus primarily on the three-junction version of this qubit. The four
junction qubit has the certain advantages due to its symmetry when fabricated using double-
angle shadow evaporation [5, 6], but otherwise it operates similarly to the three-junction qubit.

The small junction acts as a flux-shuttle value that lets a fluxoid in and out of the loop.
The larger junctions serve to add loop inductance. The loop itself has negligible inductance.
We will assume symmetric large junctions with EJ2 = EJ3 ≡ EJ and junction capacitances
C2 = C3 ≡ C. The small junction has capacitance αC and Josephson energy αEJ. The gate
capacitances are used to model the effect of offset charges in the environment. We will assume
symmetric gate capacitances CgA = CgB ≡ Cg, with a value Cg = γC.
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Fig. 5: Flux qubit and its derivatives A) Three-junction flux qubit [128, 127]. One junction
is smaller by a factor α. An external magnetic flux Φext,1 threads the loop, parameterized in
reduced units, f = Φext,1/Φ0. B) Near f = 0.5, the qubit potential assumes a double well.
For f < 0.5, the left well has a lower energy (clockwise current); for f > 0.5, the right
well has a lower energy (counter-clockwise current). At f = 0.5, the diabatic state energies
are degenerate. Tunnel coupling mixes the states, forming superpositions of the circulating
currents and the qubit has no net magnetic polarization. C) Flux qubit with tunable ∆ by
splitting the small junction into a SQUID with its own flux bias Φext,2. The SQUID junctions
are smaller by a factor β. D) Capacitively-shunted flux qubit. Decreasing the EJ/EC ratio
flattens the energy bands but increases sensitivity to charge noise. A parallel capacitor across
the small junction mitigates this noise [182, 129]. E) Two-level system energy-level diagram.
Flux tunes energy ε of the diabatic states (dashed lines). At f = 0.5, these states mix and open
an avoided crossing ∆. At this point, the flux qubit is first-order insensitive to flux fluctuations.
F) Multi-level energy level diagram for several values of the EJ/EC ratio. Larger capacitance
(D) decreases this ratio, flattening the energy bands. EJ/EC = 75 is a typical flux-qubit value.
EJ/EC < 50 is a capacitively shunted flux qubit. G) Probability of measuring clockwise (blue)
or counterclockwise (red) circulating currents using a SQUID readout. At the avoided crossing,
the readout cannot distinguish the two classical states since the net magnetic polarization is
zero. H) Simplified schematic for the flux qubit readout using a DC SQUID magnetometer. The
qubit is mutually coupled to the SQUID through either its geometric inductance (not shown)
and/or the kinetic inductance LK of a shared line. The qubit adds/subtracts a state-dependent
flux to/from the SQUID, modifying its switching current. Ramping a current between these state-
dependent values results in a switching event for one state, but not the other. Alternatively, the
SQUID inductance in parallel with the capacitor C forms a resonant circuit. RF reflectometry
techniques can be used to probe the state-dependent frequency and phase of this resonator.
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The flux qubit has a potential energy U equivalent to the total Josephson energy of the
three junctions,

U =
∑
i

EJi(1− cosφi). (58)

The fluxoid quantization condition sets φ1−φ2+φ3 = −2πf , where f ≡ Φext/Φ0 is the applied
external magnetic flux Φext normalized by the superconducting flux quantum Φ0. Eliminating
φ3 yields,

U = EJ [2 + α− cosφ1 − cosφ2 − α cos(2πf + φ1 − φ2)] (59)
= EJ [2 + α− 2 cosφp cosφm − α cos(2πf + 2φm)] (60)

where we have used the sum and difference phases φp,m = (φ1 ± φ2)/2. The two-dimensional
potential U forms an “egg carton” as a function of φp and φm with the unit cells periodic in
2π [128].

The electrostatic energy (CV 2/2) stored in the five capacitors in Fig. 5A is (see Ref. [128])

T =
1

2

(
φ0

2π

)2
~̇φT ·C · ~̇φ− 1

2
~V T

g ·Cg · ~Vg (61)

=
1

2
~QT

tot ·C−1 · ~Qtot (62)

where ~̇φ = [φ̇1, φ̇1]T, the gate voltage is ~Vg = [VA, VB]T, the total island charge is ~Qtot =

C · (Φ0/2π)~̇φ ≡ C ·V in terms of the junction voltages V, and the capacitance matrices are,

C = C

(
1 + α + γ −α
−α 1 + α + γ

)
Cg = γC

(
1 0

0 1

)
. (63)

The transition from classical Josephson and electrostatic energies to the quantum Hamiltonian
follows the correspondance principle and is presented in detail in Ref. [128]. Here, we present
the net results only.

In the phase basis, the three-junction flux-qubit Hamiltonian is

ĤFQB = 4EC

1

2

1

(1 + γ)

(
1

i

∂

∂φ̂p

)2

+
1

2

1

(1 + 2α + γ)

(
1

i

∂

∂φ̂m

)2
+ . . .

− EJ

[
2 cos φ̂p cos φ̂m + α cos(2πf + 2φ̂m)

]
, (64)

where we have dropped the energy offset (2 + α)EJ. Note that the kinetic energy term has the
form P̂ 2

p,m/2Mp,m for momenta P̂p,m = −i∂/∂φ̂p,m and masses Mp,m. Writing the kinetic term
in the charge basis, the Hamiltonian becomes:

ĤFQB = 4EC

[
1

2

1

(1 + γ)
n̂2

p +
1

2

1

(1 + 2α + γ)
n̂2

m

]
+ . . .

− EJ

[
2 cos φ̂p cos φ̂m + α cos(2πf + 2φ̂m)

]
, (65)
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where n̂p,m = n̂1 ± n̂2. Or, equivalently, in the mixed basis and in terms of the junction / island
numbering,

ĤFQB = 4EC

[
1 + α + γ

(1 + γ)(1 + 2α + γ)
(n̂2

1 + n̂2
2) +

2α

(1 + γ)(1 + 2α + γ)
n̂1n̂2

]
+ . . .

− EJ

[
cos φ̂1 + cos φ̂2 + α cos(2πf + φ̂1 − φ̂2)

]
. (66)

In either representation (φ̂1,2 or φ̂p,m), the potential term can be converted to the charge repre-
sentation using the relations in Appendix A.

When the applied flux is close to half a flux quantum, f ≈ 0.5, the potential (within a
unit cell) assumes a two-dimensional, double-well profile. A slice of this double well along the
φm direction is shown in Fig. 5B. The states in each well corresponds to a circulating persistent
currents, clockwise or counterclockwise, around the loop with magnitude Ip. As illustrated
in Fig. 5, f < 0.5 tilts the left well (clockwise circulating current) to lower energy, whereas
f > 0.5 tilts the right well (counterclockwise circulating current) to lower energy.

The two-level system model comprises the lowest-energy circultating current state in each
well. These are the classical (diabatic) states (dashed lines, Fig. 5E), and they have energy,

±~ε
2

= ±IpΦ0(f − 1/2) (67)

Note that δf ≡ f − 1/2 is sometimes used (e.g., see Sections 3 and 4) to reference the flux to
the degeneracy point at f = 1/2. At f = 0.5, the lowest-energy quantized states of the wells are
degenerate. Quantum tunneling through the double-well barrier (Fig. 5B) hybridizes the classi-
cal (diabatic) states into superpositions of circulating currents, opening an avoided crossing of
strength ∆ (Fig. 5E). The value of ∆ is generally found by diagonalizing the Hamiltonian, but
it can be estimated using the WKB approximation to be

~∆WKB ≈ 1.3
√
EJECe

−0.64
√
EJ/EC . (68)

Since EJ ∝ AJ and EC ∝ 1/AJ, where AJ is the junction area, ∆ scales exponentially with the
AJ and is thus highly sensitive to fabrication variations in the junction size.

The two-level system Hamiltonian for the flux qubit is,

ĤTLS
FQB = −1

2
[2IpΦ0(f − 1/2)σ̂x + ~∆σ̂z] (69)

≡ −~
2

[εσ̂x + ∆σ̂z] (70)

where σ̂x,z are the Pauli spin matrices (see Fig. 3D).
By splitting the small junction into a SQUID loop with two junctions having a Josephson

energy βEJ, one can tune ∆ using a second external flux Φext,2 (Fig. 5B). The Hamiltonians in
Eqs. 64, 65, 66 are modified by making the following substitutions [128]

α→ 2β (71)

α cos(2πf + 2φ̂m)→ 2β cos(πfa) cos(2πfb + 2φ̂m) (72)

where fa ≡ f2 is the reduced flux Φext,2, and fb ≡ f1 + f2/2 with f1 ≡ f in the single-loop
qubit. Essentially, the flux f2 tunes the value α via the factor 2β cos(πfa). However, because
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one of the junctions in loop 2 is shared with loop 1, the flux bias fb which tilts the double wells
picks up a factor f2/2.

As with the CPB and transmon, there is a capacitively shunted version of the flux qubit [182,
129]. Decreasing α decreases the EJ/EC ratio in the flux qubit and tends to flatten the energy
bands, thereby decreasing the qubit’s sensitivity to low-frequency flux noise. However, decreas-
ing the EJ/EC ratio also makes the qubit more sensitive to charge noise. This can be mitigated
by shunting the small junction with a capacitor.

The flux qubit is read out using either a switching-current method, resonant readout tech-
nique, or cavity-QED approach (similar to Fig. 4B). In Fig. 3H, we show a simplified schematic
of the SQUID-based switching-current and resonant-readout approach. The DC SQUID is a
sensitive magnetometer which can detect the small fluxes generated by the circulating currents.
The qubit is mutually coupled to the SQUID by a combination of geometric inductance and,
for galvanically connected devices, kinetic inductance. In the conventional switching current
readout, a pulse is applied to the SQUID close to its switching current. The precise value of
the switching current depends on the state of the qubit, and the pulse amplitude is chosen such
that the SQUID switches for one state of the qubit and not the other (see Fig. 15C for an exam-
ple). By repeating the experiment many times, an estimate for the state probability is generated
(Fig. 5G). Alternatively, the SQUID inductance forms a resonator with a parallel capacitor, and
the resonance frequency becomes qubit-state dependent through the inductance. RF reflectom-
etry can then be used to probe the SQUID resonator frequency or phase to estimate the qubit
state. Since the SQUID inductance is non-linear with its current, the SQUID resonator can be
operated in both the linear (low current) or non-linear (large current) regimes.

An example of resonant readout of the flux qubit is shown in Fig. 6. The circuit schematic
shows the flux qubit geometrically coupled to a DC SQUID. RF impedance networks are used
to match the SQUID to the 50-Ohm lines used to probe the resonator. This has the practical
effect of increasing the resonator Q value near the resonance frequency.

A DC current is used to generate an external flux Φext through the SQUID and the qubit.
By properly designing the relative areas of the SQUID and qubit, the qubit can be biased at
f = 0.5 for a value of SQUID switching current that is approximately midway between its
maximum and minimum values. In Fig. 6B, the SQUID resonance frequency is plotted as a
function of the current that applies the external flux to the qubit and SQUID. The resonance
frequency modulates due to the SQUID critical current Ic(Φext) which, in turn, modulates the
SQUID inductance LJ. Note that the SQUID inductance is only a portion of the total resonator
inductance, and the observed modulation is about 300 KHz on top of a resonance frequency
ν0 ≈ 420 MHz. A “qubit step” is clearly observed as a “jump” in the resonance frequency; this
step corresponds to the qubit ground state changing the polarity of its circulating current as the
qubit is stepped through the avoided crossing at f = 0.5 (see Fig. 5E).

Because the SQUID Josephson inductance is nonlinear in the SQUID current (the SQUID
is an effective Josephson junction, see Section 2.2.5), the SQUID resonator is fundamentally an-
harmonic and may exhibit non-linear behavior. At large amplitudes, the resonator bifurcates,
having multiple solutions (two stable solutions and one unstable solution) over a range of fre-
quencies. The stable solutions are accessed preferentially depending on the initial state of the
resonator. For example, as shown in Fig. 6C, sweeping the RF probe signal from low to high
frequency (red arrows) accesses the lower-amplitude branch of the resonance up to the bifurca-
tion point, after which the resonator state jumps to the higher-amplitude branch. In turn, starting
from the high-frequency side and sweeping to lower frequencies (yellow arrows), the resonator
state remains along the high-amplitude branch until the resonance peak is reached, after which
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Fig. 6: Resonant readout of a flux qubit [87, 91] A) Circuit schematic of the flux qubit and its
SQUID. The SQUID is isolated from the 50-Ohm environment using an L-match and tapped-
inductor impedance-matching network. The SQUID is shunted by a capacitor (not shown) and
has a plasma frequency around 420 MHz. RF near the resonance frequency is applied from the
left side, and measured at the load on the right side of the schematic in a through configuration.
B) SQUID resonance frequency as a function of the flux applied to the qubit and SQUID. The
SQUID critical current is modulated and, simultaneously, the qubit is biased. At a flux bias
current around 0.18 mA, the resonance frequency makes an abrupt jump; this step corresponds
to the qubit ground state changing the polarity of its circulating current. C) A strongly driven
resonator will bifurcate. This picture is taken on an old oscilloscope that allows us to manually
sweep from low- to high frequencies (path shown in red) and then from high- to low frequencies
(path shown in yellow) while storing the trace on the screen. The strong asymmetry is indicative
of a non-linear resonator. D) RF transmission as a function of frequency for several values of
driving amplitude. As the amplitude increases, the resonance peak becomes asymmetric due to
the SQUID nonlinearity. The resonance peak shifts to higher or lower frequency depending on
the sign of the leading-order non-linear terms that govern the SQUID dynamics.
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Fig. 7: Phase qubit and its derivatives A) and B)Single Josephson junction biased near its
critical current is a phase qubit. The junction is biased such that the wells of the washboard
potential have a few quantized states. Leakage rates to the running mode satisfy Γ2 � Γ1 � Γ0.
Driving the ω12 transition constitutes readout, which creates a voltage if the qubit were in state
1 due to tunneling from |2〉 to the running state. C and D) Flux-biased phase qubit realized in an
RF SQUID geometry. The junction is placed in a loop with geometrical inductance L, resulting
in a parabolic cosine potential (inset of C). The qubit is flux-biased with a pulsed current, and it
is manipulated via RF pulses. Readout is achieved via a fast flux pulse which transiently reduces
the potential barrier ∆U . If the qubit is in state 1, it will rapidly tunnel to the adjacent well
associated with a flux change of about one Φ0. An asymmetric DC SQUID senses the presence
or absence of this flux to perform readout. E) Capacitively shunted phase qubit. Conventional
AlOx junction dielectrics tend to be lossy and prone to defect states. Reducing the junction size
(while maintaining its Ic) and adding a parallel shunt capacitor moves the capacitive energy
outside the junction, improving qubit coherence times to the extent one can fabricate a high-Q
capacitor.

it jumps down to the single-valued low-amplitude state. Biasing a readout circuit near a bifur-
cation point therefore has the potential to increase signal-to-noise ratio (SNR) [88, 91, 92]. The
resonance bends to lower or higher frequencies depending on whether the SQUID is at a high or
low value of its switching current (Fig. 6D). This can be traced to the sign of the leading-order
non-linear terms that govern the SQUID dynamics as discussed in [91]. Intuitively, bending
to lower frequencies indicates an inductance that increases in value with increased current,
whereas bending to higher frequencies indicates an inductance that decreases with current.

2.3.5 Phase qubit

The phase qubit is a current-biased Josephson junction (see Fig. 7A) [29]. When the junction is
biased close to its critical current, the washboard potential (Fig. 7B) is sufficiently tilted that a
potential well accommodates only a few quantized states. In this limit, the local potential well
is sufficiently anharmonic that the ω01 transition can be distiguished from the ω12 transition.
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The leakage rates from the well to the running mode of the junction satisfy Γ0 � Γ1 � Γ2,
such that state |0〉 is metastable, state |1〉 is relatively long-lived, and state |2〉 tunnels rapidly.
Qubit readout is performed by driving the transition ω12. If the qubit were in state |1〉, it would
quickly tunnel to the running mode upon being driven to state |2〉. In the running mode, there
is a junction voltage; the presence of a voltage indicates the qubit was in state |1〉 whereas the
absence of a voltage indicates state |0〉.

To better isolate the junction from its environment and readout circuitry, the phase qubit
junction was placed in a loop of inductance L, forming essentially an RF SQUID (Fig. 7C and
D) [130]. The qubit potential energy U is the sum of the junction energy and the inductive
energy due to the circulating current, (inset, Fig. 7C),

U = EJ

[
1− cosφ+

1

2
LI2

circ

]
= EJ

[
1− cosφ+

(φ− φext)
2

2βL

]
= EJ(1− cosφ) + EL(φ− φext)

2 (73)

where φext ≡ 2πΦext/Φ0, βL = L/LJ = 2πLIc/Φ0, EL = (Φ0/2π)2/2L is the inductive
energy, and the fluxoid quantization condition was used.

The qubit loop is biased with an external flux Φext, effectively biasing the junction via
the loop circulating current. Tuning the external flux effectively shifts the cosine potential
wells along the parabola. At particular biases, one can achieve the potential profile illustrated in
Fig. 7C, comprising a shallow well isolated by a potential barrier of height ∆U from a relatively
deep well. The shallow and deep wells are separated by approximately Φ0. Typical parameters
that allow for a transition ω01/2π ≈ 6 GHz are Ic = 2 µA, C = 1 pF, and L = 700 pH.

Qubit manipulation is through a combination of RF pulses capacitively coupled to the
qubit and flux pulses that detune ω01 to realize Z rotations. The qubit state is readout is a
two-step process. One first uses a fast flux pulse to transiently reduce the potential barrier ∆U
(Fig. 7C). Doing so will exponentially increase the tunneling rate of state |1〉 to the right well,
but leaves state |0〉 essentially metastable. A DC SQUID is then used in a switching-current
type experiment (see sections 2.1.4 and 2.3.4) to look for a change in flux of approximately Φ0

(a huge signal), indicating that a tunneling event occurred, and so the qubit was in state |1〉. An
asymmetric DC SQUID (see section 2.2.4) is used, because it can have sensitivity dIc/dΦext to
the external flux generated by the qubit without need for the SQUID having its own static flux
bias. Finally, a flux pulse tilts the wells to reset the qubit state back into the left well.

The Hamiltonian for flux-biased phase qubit (an RF SQUID) is [183]

ĤRFS = 4EC(n̂− n0)2 − EJ cos φ̂+ EL(φ̂− φext)
2 (74)

where n0 represents fluctuating offset charges across the junction and shunt capacitances, and
we have dropped the energy offset from the Josephson energy. Within the two-level system
model, the phase qubit Hamiltonian is essentially a pseudospin with energy ω01 along σz with
a transverse component related to changes in the circulating current δIcirc. However, changing
the circulating current will also change the frequency ω01. As a result, the Hamiltonian is
approximately [29, 131],

ĤTLS
RFS =− 1

2

[
~ω01σ̂z +

√
~

2ω01C
δIcirc (σ̂x + χσ̂z)

]
(75)
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where χ =
√

~ω01/3∆U ≈ 4 for typical parameters.
In early experiments, the phase qubit suffered from loss and defects in the AlOx junction

dielectric barrier [132]. An improvement was made by reducing the junction area (while main-
taining Ic) and adding a large external shunt capacitor to compensate for the reduced junction
capacitance (Fig. 7E) [133]. This design change placed the focus on developing a high-Q capac-
itor dielectric for the external capacitor as opposed to improving the Q of the junction barrier.
Of the various barriers attempted, amorphous silicon dioxide (a-SiOx) has a relatively high loss
tangent (Q−1) of∼ 5× 10−3 compared with∼ 1× 10−4 for amorphous silicon nitride (a-SiNx)
and yet another factor 10 or so better for hydrogenated amorphous silicon (a-Si:H) [134]. Ef-
forts continue to improve these dielectrics, their surfaces and interfaces, and the development
of new materials and fabrication techniques consistent with high-Q qubits.

2.3.6 RF SQUID qubit

The RF SQUID qubit was among the first flux qubits to demonstrate quantized energy levels and
an avoided level crossing [24] (the other was the persistent-current flux qubit [25]). Although
its Hamiltonian (Eq. 74) is the same as the flux-biased phase qubit, its mode of operation is
most similar to the persistent-current flux qubit. The RF SQUID is nominally operated near a
symmetric double-well potential configuration. The classical (diabatic) states of the RF SQUID
are the circulating current states, and resonant tunneling through the double-well barrier will
open an avoided crossing. Coherence in the RF SQUID qubit has not improved as dramatically
as other qubits over the past several years, in part due to its strong sensitivity to flux noise.

2.3.7 Fluxonium and metastable RF-SQUID: inductively shunted qubits

Most qubits surveyed thus far have a capacitively shunted version which provided a perfor-
mance improvement. There are two complementary examples of inductively shunted qubits:
the fluxonium qubit [135], and the metastable RF-SQUID qubit [183]. Both are single junction
loops shunted by a large inductance, have large anharmonicity, and can be viewed as inductively
shunted RF-SQUIDs described by the RF-SQUID Hamiltonian (Eq. 74). They operate in very
different parameter regimes.

The fluxonium qubit demonstrated in Ref. [135] has parameters: EJ = 9.0 GHz, EC =
2.5 GHz, and EL = 0.52 GHz. The shunt inductance is realized by a series array of junctions
(43 junctions were used in Ref. [135]), each with an area about an order of magnitude larger
than the small, single junction. The small, single junction acts as the flux-shuttle valve in and
out of the loop. The series array of junctions both provides the shunt inductance and a DC short-
circuit for offset charges on the islands connected to the small junction. The result is a qubit that
is relatively immune to such charge noise. Each junction of the inductor array itself is designed
to have parameters that suppress phase slips, that is, acting as a parallel flux-shuttle path to the
small junction. These phase slips are in fact related to residual offset charges throughout the
array. The coherent interaction of these phase slips across all junctions has led to a beautiful
demonstration of Aharonov-Chasher physics with this superconducting qubit [136].

The metastable flux qubit, as designed in Ref. [183], has parameters: EJ = 120 GHz,
EC = 6 GHz, and EL = 60 GHz. The large shunt inductance is realized via the kinetic in-
ductance of a 5-nm thick niobium nitride (NbN) nanowire of the type used in single-photon
detectors. A key feature of the nanowire is that it is compact, exhibits extremely large kinetic
inductance, and yet has an extremely low shunt capacitance. For example, a 10 × 10 µm2 me-
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ander of 100-nm wide wire has an inductance L ∼ 500 nH and yet only 0.4 fF of capacitance
(based on EM simulations) [183, 137]. The qubit is designed to have a very small tunnel cou-
pling (∆ ∼ 50 kHz), which increases T1 times by reducing the transverse coupling of the qubit
states, making it metastable (e.g., the qubit used in Ref. [38] had ∆ ∼ 10 MHz and correspond-
ingly T1 → 1ms away from the qubit degeneracy point). Although it remains to be tested, the
quantum phase-slip rate through the nanowire, which acts to increase ∆ and thereby decrease
T1, is expected to be much lower than for a series array of junctions. Since ~∆ � kBΘ at
degeneracy, the qubit must be operated far from the degeneracy point, f � 0.5 or f � 0.5. Al-
though there is non-zero energy dispersion away from degeneracy, the large inductance serves to
dramatically reduce the flux sensitivity dω01/df , such that simulation suggests that T2 ∼ 15 µs
(this “T2” is actually a Gaussian decay time due to 1/f noise, see Section 3.3.2) is achievable
with standard levels of 1/f flux noise. Qubit control is achieved by parametrically modulating
∆ at frequency ω01 through a split-junction loop of the type discussed in Section 2.3.4. The
large inductance suppresses the circulating current to a degree that a switching current read-
out is no longer feasible. Rather, both a dispersive-type readout or qubit-mediated coupling
techniques [70] can be used to readout the metastable flux qubit.

3 Free- and driven evolution of two-level systems

Quantum gate operations in superconducting qubits (and most qubit modalities in general) are
broadly realized by two categories of coherent evolution: free evolution and driven evolution.
During these periods of evolution, unwanted environmental noise acts to decohere the qubit and
increase the gate error rate. Characterizing the noise which couples to the qubit during these
two periods is therefore an important first step towards either mitigating or eliminating these
sources of decoherence.

In this section, we will review the Bloch sphere representation of a two-level system,
and consider how parameter fluctuations (i.e., noise) impacts qubit dynamics in the laboratory,
qubit (eigenstate), and rotating frames. We will then present a general perturbative approach to
analyzing noise based on the approach used by Ithier et al. [7]. This will allow us to make a
connection between the decay functions measured in experiments and the noise power spectral
density Sλ(ω). The analogy between free- and driven evolution when viewed on a Bloch sphere
allows us to define analogous energy-relaxation times (T1 and T1ρ) and coherence times (T2 and
T2ρ) respectively for these two categories of evolution. The characteristic times need not corre-
spond to exponential decay functions, and this is the case for decay functions corresponding to
low-frequency noise. Table 3 summarizes the results discussed in this section.
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3.1 Representations of the qubit Hamiltonian

3.1.1 Laboratory frame

In general, noise physically couples to a qubit in the laboratory frame. The Hamiltonian of the
a two-level system in the laboratory frame (Fig. 8A) is

Ĥ =
~
2
{[∆ + δ∆(t)] σ̂z + [ε+ δε(t)] σ̂x + Arf cos(ωrft+ ϕ)σ̂x} (76)

=
~
2

[
∆σ̂z + εσ̂x + Arf cos(ωrft+ ϕ)σ̂x

]
+
[
δ∆(t)σ̂z + δε(t)σ̂x

]
≡ Ĥ0 + ĤF

where σ̂z and σ̂x are Pauli operators. ε and ∆ are parameters that depend on the particular
physical qubit modality, for example, the energies corresponding to the circulating currents
and tunnel coupling of a flux qubit. The oscillating term represents the harmonic drive with
amplitude Arf , carrier frequency νrf = ωrf/2π and phase ϕ. Note that Arf is generally shaped
and of finite duration (e.g., a Gaussian pulse) in order to implement a particular gate operation
(e.g., a π/2 pulse around X) or set to zero (free evolution). We consider δε(t) and δ∆(t) to
be temporal fluctuations of the parameters ε and ∆. To avoid clutter, we will not continue to
write explicitly the time dependence. To make the presentation clearer, we do not explicitly
carry through fluctuations δArf of the driving field Arf , although they can be treated in a similar
manner to δε and δ∆. These fluctuations are considered to be the main physical sources of
decoherence in many experiments. Although they have a clear physical manifestation in the
lab frame, the decoherence they cause occurs in the frame spanned by the qubit eigenbasis.
To facilitate presentation in what follows, we have gathered the terms in Eq. 76 into a static
Hamiltonian Ĥ0 and a fluctuating Hamiltonian ĤF .

3.1.2 Qubit frame (qubit eigenbasis)

By making the transformation,

σ̂x′ = cos θ σ̂x − sin θ σ̂z ,

σ̂y′ = σ̂y ,

σ̂z′ = cos θ σ̂z + sin θ σ̂x , (77)

where θ = arctan(ε/∆) is the rotation angle of the quantization axis from the lab frame, we
can write the Hamiltonian in Eq. 76 in the qubit (eigenbasis) frame (Fig. 8b):

Ĥ′ = Ĥ′0 + Ĥ′F (78)

Ĥ′0 =
~
2

[
ωqσ̂z′ + Arf cos θ cos(ωrft+ ϕ)σ̂x′ + Arf sin θ cos(ωrft+ ϕ)σ̂z′

]
Ĥ′F =

~
2

[(δε sin θ + δ∆ cos θ) σ̂z′ + (δε cos θ − δ∆ sin θ) σ̂x′ ]

where ωq =
√
ε2 + ∆2 is the qubit’s level-splitting. The coherence times T1 and T2 associated

with free-evolution can be visualized in this reference frame (Fig. 9A and B).
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A) Laboratory frame

C) Rotating frame (ϕ=0, o�-resonance)

B) Qubit frame

D) Rotating frame (ϕ=0, on-resonance)

z

y

x

Hstatic

∆

ε

θ

Hrf
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z’
z’

y’

x’
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2νRcos(2πνrft+φ)
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2πνrft

Z
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Z’

X
ωR

ωR'
∆ω

Z
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X
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Fig. 8: The two-level system Hamiltonian represented in the Bloch picture for different
reference frames. A) Laboratory frame. Ĥstatic = ∆σ̂z + εσ̂x, Ĥrf = Arf cos(ωrft + ϕ)σ̂x.
θ indicates the rotation required transform into the qubit frame. B) Qubit frame. The qubit’s
eigenbasis. The red arrow (ωq) is the free-evolution quantizing field. ωrft indicates the time-
dependent transformation required to transform into the rotating frame. C) Rotating frame
(ϕ = 0). The pink arrow (ω′

R
) indicates the effective driven-evolution quantizing (Rabi) field

in the rotating frame in the presence of a finite drive-frequency detuning ∆ω. D) Rotating
frame (same as (c) but with ∆ω = 0). The yellow arrow (ω

R
) indicates the resonantly driven

quantizing field, which corresponds to a pseudospin.
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3.1.3 Rotating frame

Driven-evolution dynamics are conveniently described in a reference frame which rotates around
z′ at the drive frequency νrf . This frame is accessed through a second transformation,

σ̂X = cos(ωrft)σ̂x′ + sin(ωrft)σ̂y′ ,

σ̂Y = cos(ωrft)σ̂y′ − sin(ωrft)σ̂x′ ,

σ̂Z = σ̂z′ , (79)

which applied to the Hamiltonian in Eq. 78 yields (keeping only static terms for the moment):

ˆ̃H0 =
~
2

[
∆ωσ̂Z +

1

2
Arf cos θ

(
cosϕ σ̂X + sinϕ σ̂Y

)
+

1

2
Arf cos θ

(
cos(−2ωrft− ϕ)σ̂X + sin(−2ωrft− ϕ)σ̂Y

)
+ Arf sin θ cos(ωt+ ϕ)σ̂Z

]
, (80)

where ∆ω = ωq−ωrf is the frequency detuning between the qubit and the driving field (Fig. 8C).
In the weak driving limit (ω

R
�ωrf), the last two lines in Eq. 80 can be omitted, since these rapid

oscillations average to zero on any appreciable time scale of the (weakly driven) qubit dynamics
in this rotating frame; this is called the rotating wave approximation. The static Hamiltonian
within the rotating wave approximation is:

ˆ̃H0 = (~/2)
[
∆ωσ̂Z + ω

R
(cosϕ σ̂X + sinϕ σ̂Y )

]
, (81)

where ω
R

= 1
2
Arf cos θ is the Rabi frequency under resonant driving (ωrf = ωq → ∆ω = 0)

(Fig. 8D). More generally, in the presence of non-zero frequency detuning ∆ω (Fig. 8C), Eq. 81
describes an effective driving field, whose effective Rabi frequency

ω′
R

= ω
R

√
1 + (∆ω/ω

R
)2

≈ ω
R

+ ∆ω2/2ω
R

(82)

is linearly sensitive to variations in ω
R

and quadratically sensitive in ∆ω.
Within the RWA, the full Hamiltonian (static and fluctuating terms) is

ˆ̃H =
ˆ̃H0 +

ˆ̃HF (83)
ˆ̃H0 = (~/2)

[
∆ωσ̂Z + ω

R
(cosϕ σ̂X + sinϕ σ̂Y )

]
,

ˆ̃HF = (~/2)
[

(δ∆ cos θ + δε sin θ) σ̂Z . . .

+ (−δ∆ sin θ + δε cos θ) cos(ωrft)σ̂X . . .

− (−δ∆ sin θ + δε cos θ) sin(ωrft)σ̂Y
]
, (84)

where we have kept certain terms which contain sinusoids at frequency ωrf , because these sinu-
soids will mix down any existing high-frequency components (e.g., noise at frequencies ω±ωrf)
of the fluctuation terms δε and δ∆ to a lower frequency ω that is relevant for the time scales of
the qubit dynamics and, therefore, cannot be omitted within the RWA. The coherence times T1ρ

and T2ρ associated with driven-evolution can be visualized in this reference frame (Fig. 9C and
D).
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3.2 General perturbation expansion of Hamiltonian
Following Ithier et al. [7, 181] and using their notation, we consider a general expansion of the
unperturbed Hamiltonian Ĥ′0 so that we can make connections to the fluctuation terms in the
laboratory, qubit, and rotating frame Hamiltonians.

The Hamiltonian in the absence of fluctuation (unperturbed Hamiltonian) is

Ĥ = −1

2
~H0(λ0) · ~̂σ (85)

which is a function of parameter(s) λ0, corresponding to the static values of flux, charge, critical
current, etc. used to bias the qubits. Expanding to second order in the perturbation(s) δλ, that
is, fluctuations in flux, charge, critical current, etc., yields:

Ĥ = −1

2

[
~H0(λ0) +

∂ ~H0

∂λ
δλ+

∂2 ~H0

∂λ2

δλ2

2
+ · · ·

]
~̂σ. (86)

Following Refs. [181, 7], we introduce the notation

~Dλ ≡
1

~
∂ ~H0

∂λ
(87)

~Dλ2 ≡
1

~
∂2 ~H0

∂λ2
(88)

In the eigenbasis of the qubit (section 3.1.2, Fig. 8B),

Ĥ = −1

2
~ [ωqσ̂z′ + δωz′σ̂z′ + δω⊥σ̂⊥] (89)

= −1

2
~
[
ωqσ̂z′ + (Dλ,z′δλ+Dλ2,z′

δλ2

2
+ . . .)σ̂z′ + (Dλ,⊥δλ+ . . .)σ̂⊥

]
(90)

where ~ωq ≡ | ~H0(λ0)| = hνq is the static unperturbed qubit level splitting. The longitudinal
coefficients are

Dλ,z =
∂ωq

∂λ
(91)

Dλ2,z =
∂2ωq

∂λ2
−
D2
λ,⊥

ωq

(92)

and the transverse coefficient is

Dλ,⊥ =
∂ω⊥
∂λ

(93)

Pure dephasing is related to the derivatives of ωq(λ), while the transverse decay (relaxation or
depolarization) is related to ω⊥(λ). The derivatives ~Dλ capture the Hamiltonian’s sensitivity to
a fluctuation δλ and correspondingly to higher orders.

To calculate or simulate the effect of fluctuations in the qubit basis, Eq. 90, the first-order
contribution of the fluctuations should be written using the chain rule:

∂ωq

∂λ
=
∂ωq

∂ε

∂ε

∂λ
+
∂ωq

∂∆

∂∆

∂λ
. (94)
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For second-order contributions, the chain rule becomes:

∂2ωq

∂λ2
=

[
∂2ωq

∂ε2

(
∂ε

∂λ

)2

+
∂ωq

∂ε

∂2ε

∂λ2

]
+

[
∂2ωq

∂∆2

(
∂∆

∂λ

)2

+
∂ωq

∂∆

∂2∆

∂λ2

]
. (95)

The derivative of ωq with respect to ε and ∆ from the definition ωq =
√
ε2 + ∆2 accounts for

the change in basis between the qubit and lab frames (i.e., the angle θ). These are written:

dωq

dε
=

ε

(ε2 + ∆2)1/2
(96)

d2ωq

dε2
=

∆2

(ε2 + ∆2)3/2
(97)

dωq

d∆
=

∆

(ε2 + ∆2)1/2
(98)

d2ωq

d∆2
=

ε2

(ε2 + ∆2)3/2
. (99)

We can make a connection between the first-order derivatives here and the longitudinal
noise terms (σz′ terms) in Eq. 78. From a geometrical argument, since θ = arctan(ε/∆),(

dωq

dε

)
δε =

ε

(ε2 + ∆2)1/2
δε = sin θ δε (100)(

dωq

d∆

)
δ∆ =

∆

(ε2 + ∆2)1/2
δ∆ = cos θ δ∆. (101)

To make a connection to the physical noise source λ (flux, charge, critical current, etc.),
we insert the noise sensitivities ξε,λ = dε/dλ and ξ∆,λ = d∆/dλ,(

dωq

dλ

)
δλ =

dωq

dε

dε

dλ
δλ→ sin θ ξε,λ dλ (102)(

dωq

dλ

)
δλ =

dωq

d∆

d∆

dλ
δλ→ sin θ ξ∆,λ dλ. (103)

For example, the flux (Φ) sensitivities in a typical persistent current qubit with tunable ε and
static ∆ are ξε,Φ = 1 GHz/mΦ0 and ξ∆,Φ = 0. In general, these sensitivities are inferred either
from experiment or from simulations.

3.3 Longitudinal and transverse relaxation

The dynamics of the qubit state within a two-level model can be visualized on the Bloch sphere
(see Fig. 9A, B). We consider first the qubit reference frame in the absence of driving, Arf = 0.
In this case, the Hamiltonian (Eq. 78) contains only the “qubit field” νq (red arrow in Fig. 9)
which defines the qubit quantization axis along z′.
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A) T1 
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ωq y’

x’

β=0°

qubit state
precession
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XωR

β=90°

ZT1ρ C)

Y

Z

X
ωR

β=0°

D)

z’

ωq

y’

x’

β=90°

B) FID (”T2”)

Rabi (”TR” or “T2ρ”)

free evolution (kBθ<<hνq)

driven evolution (kBθ>>hνR)

Fig. 9: Schematic diagram of system dynamics in analogous experiments between free
evolution and driven evolution. A) and B) illustrate depolarization during free-evolution in
the qubit frame. A) longitudinal depolarization T1. B) transverse free-induction decay (FID).
The relaxation FID time is written “T2”, because the decay function need not be exponential,
and the illustration ignores the effects due to longitudinal relaxation. C) and D) illustrate
depolarization during driven-evolution in the rotating frame. C) longitudinal depolarization
T1ρ in the qubit frame. D) transverse Rabi oscillations. The characteristic decay time is written
“TR”, because the decay function need not be exponential, and the illustration ignores the
effects due to longitudinal relaxation. The illustrated longitudinal depolarization in A) and C)
is based on the condition (typical for superconducting qubits), ~ω

R
� k

B
T � ~ωq, so that, in

the steady state, 〈σ̂z′〉 ≈ −1 for the T1 process, and 〈σ̂X〉 ≈ 0 for the T1ρ process. For the
illustrated transverse depolarization in B) and D), dephasing (or dephasing-type) processes act
to depolarize the Bloch vector to the origin.
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3.3.1 Bloch-Redfield approach

Within the standard Bloch-Redfield [176, 177, 178] picture of two-level system dynamics, noise
sources are weakly coupled to the qubits have short correlation times with respect to the system
dynamics. In this case, the relaxation processes are characterized by two rates:

Bloch-Redfield longitudinal relaxation rate Γ1 ≡
1

T1

Bloch-Redfield transverse relaxation rate Γ2 ≡
1

T2

=
Γ1

2
+ Γϕ

which contains the pure dephasing rate Γϕ. Note that the definition of Γ2 as a sum of rates is
only valid if the noise spectra are Lorentzian (centered at ω = 0), that is, the decay functions
are exponential. For an initial state (t = 0)

α|0〉+ β|1〉, (104)

the density matrix for the qubit is written [181, 7],

ρBR =

(
1 + (|α|2 − 1)e−Γ1t αβ∗ei∆ωte−Γ2t

α∗βe−i∆ωte−Γ2t |β|2e−Γ1t.

)
(105)

The longitudinal relaxation rate Γ1 describes depolarization along the qubit quantization
axis. It is caused by transverse noise, since off-diagonal elements of an interaction Hamiltonian
will connect states |0〉 and |1〉. Depolarization in principle occurs due to both up (excitation
from |0〉 to |1〉) and down (relaxation from |1〉 to |0〉) rates:

Γ1 ≡
1

T1

= Γ1↓ + Γ1↑. (106)

In superconducting qubits, it is generally the case that kBΘ � hνq (although not always,
e.g., see section 4.4), and the up rate is exponentially suppressed by the Boltzmann factor
exp(−hνq/kBΘ). Only noise at the qubit frequency mediates qubit transitions, whether ab-
sorption or emission, and this noise is generally “well behaved” (short correlation time, weakly
coupled to qubit, no divergences) around the qubit frequency in superconducting qubits . Lon-
gitudinal depolarization measurements exhibit an exponential decay function, consistent with
the Bloch-Redfield picture.

Longitudinal noise fluctuates the qubit field vector in Fig. 9B. This, in turn, varies the
precession rate of the Bloch vector on the equator and causes dephasing Γϕ. Since dephasing
is not a resonant process, it is sensitive to broadband fluctuations. In superconducting qubits
this noise (e.g., flux noise, charge noise, critical-current noise, ...) tends to exhibit a 1/f -like
behavior. This noise is singular near ν = 0, has long correlation times, and generally does
not fall within the Bloch-Redfield description. The decay function of the off-diagonal terms in
Eq. 105 are generally non-exponential.

3.3.2 Modification due to 1/f -type noise

If we assume that the qubit is coupled to many independent fluctuators, then, independent of
their individual statistics, they will in concert generate noise with a Gaussian distribution due to
the central limit theorem. We therefore say that the longitudinal fluctuations exhibit Gaussian-
distributed 1/f noise. For 1/f noise spectra, the phase decay function is itself a Gaussian
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exp [−(Γϕt)
2], and it factors from the T1 exponential decay because the noise remains regular

at the qubit frequency. The density matrix in Eq. 105 becomes, following Refs. [181, 11],

ρ =

(
1 + (|α|2 − 1)e−Γ1t αβ∗ei∆ωte−

Γ1
2
te−χN (t)

α∗βe−i∆ωte−
Γ1
2
te−χN (t) |β|2e−Γ1t

)
. (107)

where the decay function 〈exp(−χN(t))〉 contains the so-called coherence function χN and is
used to describe dephasing. The subscript N labels the decay function, and it will refer to the
number of π-pulses used to refocus the low-frequency noise, which impacts the form of the
decay function.

3.4 Power spectral density (PSD)
The frequency distribution of the noise power for a stationary noise source λ is characterized
by its PSD Sλ(ω)

Sλ(ω) =

∫ ∞
−∞

dτ 〈λ(τ)λ(0)〉e−iωτ . (108)

The PSD is the Fourier transform of the autocorrelation function cλ(τ) = 〈λ(τ)λ(0)〉 of the
noise source λ. Since the integration limits are (−∞,∞), this is the bilateral PSD. Symmetriz-
ing the PSD allows one to consider only positive frequencies, which is termed a unilateral PSD.
Both unilateral and bilateral PSDs are used, often with the same notation, and so one needs to
know how the PSD is defined, keep track of the factors of 2 and π, and also be aware of the
implications for quantum systems.

For quantum systems, the autocorrelation function is in general complex due to non-
commuting variables in the system (qubit-bath) Hamiltonian. This means that the PSD is not
a symmetric function in frequency. Noise at a positive frequency S(νq) corresponds to energy
transfer from the qubit to the environment, including both stimulated and spontaneous emission,
associated with the down-rate Γ1↓. Noise at a negative frequency S(−νq) corresponds to energy
transfer to the qubit from the environment, associated with the up-rate Γ1↑. For a detailed
discussion, see Refs. [184, 185].

In turn, the inverse Fourier transform of the PSD will yield the autocorrelation function.
This implies that integrating the noise power spectral density with τ = 0 yields the variance σ2

λ

of the noise.

cλ(τ) =
1

2π

∫ ∞
−∞

dωSλ(ω)eiωτ (109)

σ2
λ ≡ cλ(0) =

1

2π

∫ ∞
−∞

dωSλ(ω) (110)

Making a connection between Sλ(ω) and the measured qubit decay functions is the basis for
noise spectroscopy.

3.5 Connecting T1 to Sλ(ω)

The connection between Sλ(ω) and the measured decay time T1 can be made using Fermi’s
Golden Rule, within the assumption that the qubit is weakly coupled to its environment. Con-
sidering the transition rate from excited to ground state, Γ1↓,λ due to a particular noise source λ,
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yields: (see Ref. [181, 182, 70, 185] for details):

Γ1↓,λ =
2π

~
|mλ|2ρ(~ωq) (111)

=
1

~2
|dλ|2 Sλ(ωq) (112)

= D2
λ,⊥ Sλ(ωq) (113)

where mλ ≡ 〈1|m̂λ|0〉 = 〈1|Ĥ(λ)
int |0〉, and m̂λ ≡ Ĥ(λ)

int = (dĤ0/dλ)δλ is the first-order interac-
tion Hamiltonian between the qubit and the environment due to a fluctuator λ and characterized
by a density of states ρ(~ωq) at the qubit frequency. The second line writes the expression in
terms of the qubit’s (energy) susceptibility dλ to external fluctuations,

dλ ≡ 〈1|d̂λ|0〉 = 〈1|dĤ0

dλ
|0〉 = ~Dλ,⊥, (114)

which is the energy-units version of Dλ,⊥ in Eq. 93, and it can be interpreted as the transition
dipole for the fluctuator λ [70]. Adopting a PSD is useful, since noise is typically an aggregate
effect over many fluctuators, each of which may have a different matrix element mλ. The noise
PSD is correspondingly defined

Sλ(ωq) = 2π~(δλ)2ρ(~ωq) (115)

and has units of λ2/s−1. The interaction Hamiltonian and the susceptibility (transition dipole)
operators are simply related,

d̂λ =
m̂λ

δλ
. (116)

Examples from the Hamiltonians written in section 2.3 are presented in Table 2.

Ĥλ δλ m̂λ d̂λ
4EC(n̂− n̂g)2 δn 8δnECn̂ 8ECn̂

−EJ cos(φ̂+ 2πf) δf 2πδfEJ sin(φ̂+ 2πf) 2πEJ sin(φ̂+ 2πf)

−EJ cos(φ̂+ 2πf) δi −δiEJ cos(φ̂+ 2πf) −EJ cos(φ̂+ 2πf)

Table 2: Examples of interaction Hamiltonians used to calculate interaction matrix elements
m̂λ ≡ Ĥint and susceptibilities d̂λ ≡ Ĥint/δλ. Note that δi ≡ δIc/Ic is the reduced critical
current fluctuation.

With this definition, we can write a general result for the decay rate Γ1,

Γ1↓ =
∑
λ

Γ1↓,λ =
∑
λ

D2
λ,⊥ Sλ(ωq) (117)

Γ1↑ =
∑
λ

Γ1↑,λ =
∑
λ

D2
λ,⊥ Sλ(−ωq) (118)

Γ1 ≡
1

T1

= Γ1↓ + Γ1↑ ≈ Γ1↓ (119)

where the approximation holds for kBΘ � ~ωq when the qubit is in thermal equilibrium
with its environment. This follows from the detailed balance of the transition rates Γ1↑ =
exp(−~ω/kBΘ)Γ1↓ required to obtain the correct state populations in thermal equilibrium.
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3.6 Connecting Tϕ to Sλ(ω)

A

N π-pulses  (N > 1)
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Fig. 10: Filter function gN(ω, τ). A) Carr-Purcell-Meiboom-Gill sequence with N π-pulses
(refocussing pulses). The total time duration between the two π/2-pulses is τ + Nτπ, where
τ is the free evolution time, and τπ the time during during the π pulses.N = 0 is a Ramsey
experiment, which has only free evolution and no refocusing pulses. N = 1 is a Hahn echo
(spin echo) experiment. B) Filter function for N = 0 . . . 10 with τ = 1 µs. For N = 0, the
Ramsey case, the filter function is peaked at zero frequency, making Ramsey highly susceptible
to 1/f -type noise. As the number N increases, the bandpass filter shifts to higher frequencies
and thereby decreases the effective noise power dephasing the qubit. The area under all curves
is the same. C) Filter function for N = 1 and τ = 0.25, 0.5, and 1 µs. D) The filter function
shapes the noise PSD S(ω) and depends on the number of π-pulses N used to refocus the low-
frequency noise. In turn, since it connects the PSD to the decay function, and for parameters
that give a function narrow in frequency, it can be used to back out the PSD.

We consider a superposition state undergoing free evolution. For example, we could
create an equal superposition state of the qubit (on the equator of the Bloch sphere) by driving
the qubit from its ground state by a π/2 pulse (Fig. 9B, qubit frame). As the superposition state
undergoes free evolution, noise in the qubit field will translate to noise in the precession rate,
which acts to dephase the qubit.

The superposition state’s accumulated phase (relative between the two states),

ϕ(t) =

∫ t

0

ωqdt
′ = 〈ωq〉t+ δϕ(t) (120)

diffuses due to adiabatic fluctuations of the transition frequency,

δϕ(t) = (∂ωq/∂λ)

∫ t

0

dt′δλ(t′) = Dλ,z

∫ t

0

dt′δλ(t′), (121)

where ∂ωq/∂λ = Dλ,z (see Eq. 91) is the qubit’s longitudinal sensitivity to λ-noise. For noise
generated by a large number of fluctuators that are weakly coupled to the qubit, its statistics
are Gaussian. Ensemble averaging over all realizations of the Gaussian-distributed stochastic
process δλ(t), the dephasing is

〈ei δϕ(t)〉 = e−
1
2
〈δϕ2(t)〉 ≡ e−χN (t), (122)
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with the coherence integral

χN(τ) =
τ 2

2

∑
λ

(
∂ωq

∂λ

)2 ∫ ∞
−∞

dω Sλ(ω) gN(ω, τ), (123)

where τ is the free evolution time, N will denote the number of π pulses (if any, N = 0
allowed) in pulse sequences applied to the qubit to reduce the noise (e.g., N = 1 is the Hahn
echo, N > 1 are CPMG, etc.) [189, 190, 11], and gN is a dimensionless weighting function
defined in equation (124).

The function gN(ω, τ) can be viewed as a frequency-domain filter of the noise Sλ(ω). In
general, its filter properties depend on the number N and distribution of π-pulses [191, 189,
192, 190, 193, 11],

gN(ω, τ) =
1

(ωτ)2

∣∣∣1 + (−1)1+N exp(iωτ) + 2
N∑
j=1

(−1)j exp(iωδjτ) cos(ωτπ/2)
∣∣∣2, (124)

where δj ∈ [0, 1] is the normalized position of the centre of the jth π-pulse between the two
π/2-pulses, τ is the total free-induction time, and τπ is the length of each π-pulse [190, 193],
yielding a total sequence length τ + Nτπ. As the number of pulses increases for fixed τ , the
filter function’s peak shifts to higher frequencies (Fig. 10B), leading to a reduction in the net
integrated noise (Eq. 123) for 1/fα-type noise spectra with α > 0. Similarly, for a fixed N , the
filter function will shift in frequency with τ (Fig. 10C). Additionally, for a fixed time separation
τ ′ = τ/N (valid for N ≥ 1), the filter sharpens and asymptotically peaks at ω′/2π = 1/2τ ′ as
more pulses are added (Fig. 10D). Note that we have have purposefully written gN(ω, τ) as a
band-pass filter (Fig. 10), which we will effectively utilize to sample the environmental noise
Sλ(ω) by varying the number of pulses N and the total sequence time τ . This interpretation
can be contrasted with several previous works [189, 194, 192, 190, 193], in which the quantity
(ωτ)2gN(ω, τ) was interpreted as a high-pass filter acting on a phase noise Sλ(ω)/ω2.

In the N = 0 case, a Ramsey experiment, the decay function is

e−χ0(t) = 〈ei∆φ(t)〉 = e−
1
2
〈∆φ(t)2〉 (125)

= exp

[
t2

2
D2
λ,z

∫ ∞
−∞

dω Sλ(ω)sinc2ωt

2

]
(126)

≡ exp

[
t2

2
D2
λ,z

∫ ∞
−∞

dω Sλ(ω)g0(ω, t)

]
. (127)

which follows from Eqs. 108, 121, and 122. The Ramsey decay function is proportional to a
sinc-function (Fig. 10B) which is centered at ω = 0. For noise that decreases with frequency,
e.g., 1/f -type noise in superconducting qubits, the Ramsey experiment windows S(ω) where it
has the highest value. In this sense, it is a worst possible (noisiest) choice of filter function (see
Fig. 11A).

In the N = 1 case, a Hahn echo (spin echo) experiment, there is a single π-pulse that is
applied at time τ/2 which acts to refocus the Bloch vector. The phase fluctuation δφE(t1, t2)
during the two periods t1 and t2 of free evolution is

∆φE(t1, t2) ≡ −∆φt1 + ∆φt2 = −Dλ,z

∫ t1

0

dt′ δλ(t′) +Dλ,z

∫ t1+t2

t1

dt′ δλ(t′) (128)
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Fig. 11: Dephasing and its relation to Ramsey, spin echo, and CPMG dynamical decou-
pling [11]. A) The free-induction Ramsey decay rate ΓφF, spin-echo decay rate ΓφE, and energy
relaxation rate Γ1 as a function of flux detuning δf ≡ f − 1/2 for the qubit shown in Fig. 13.
ΓφF is generally larger than ΓφE due to the filter function. At the degeneracy point δf = 0,
ΓφF and ΓφE are smallest due to the qubit’s first-order protection from flux noise. At this point,
ΓφE = Γ1/2, i.e., T2E = 2T1. B) Energy level diagram illustrating the sensitivity ∂E/∂Φ due
to fluctuation in the flux dΦ. At the degeneracy point δf = 0, the energy levels have zero slope,
and the qubit is first-order insensitive to flux noise. At δf 6= 0, the energy levels shift with flux,
and the qubit is therefore sensitive to flux noise. C) Decay rates for Ramsey (N = 0), Hahn
(spin) echo (N = 1), and CPMG with N = 1, 2, 4, 6, 8, 10, 16, 20, 24, 30, 36, 42, 48.
As N increases, the filter function gN shifts to higher frequencies, and so the qubit becomes
less sensitive to 1/f flux noise. At degeneracy, a single π pulse improves the decay rate to
Γ2 = Γ1/2. D) Away from degeneracy, δf = −0.4 mΦ0, the qubit is highly sensitive to flux
noise. Increasing N up to 200 pulses improves the decay time towards the T2 = 2T1 limit.
CPMG (π-pulses in quadrature to π/2-pulses) is compared with CP (all pulses in phase) and
UDD (sinusoidal pulse spacing) pulse sequences (see Fig. 12 and Ref. [11]).
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and using t1 = t2 = τ/2, the echo decay function is

e−χ1(t) = 〈ei∆φE(t1=t2)〉 = e−
1
2
〈∆φE(t1=t2)2〉 (129)

= exp

[
t2

2
D2
λ,z

∫ ∞
−∞

dω Sλ(ω) sin2 ωt

4
sinc2ωt

4

]
(130)

≡ exp

[
t2

2
D2
λ,z

∫ ∞
−∞

dω Sλ(ω)g1(ω, t)

]
. (131)

In Fig. 10B, the N = 1 filter function peaks away from ω = 0. For noise that decreases with
frequency, as is the case with superconducting qubits, this is advantageous; the integrated noise
and, thereby, the decay rate is lower with the echo than with the Ramsey experiment.

The general trend is confirmed as a function of flux detuning δf ≡ f−1/2 in Fig. 11A. At
the degeneracy point δf = 0, the qubit is first-order insensitive to flux fluctuations (Fig. 11B)),
and so the decoherence rates are lowest at this bias. In fact, the echo rate is T1-limited, ΓE =
Γ1/2. Away from δf = 0, the qubit becomes more sensitive to flux fluctuations, and so both the
Ramsey and echo decoherence rates increase [8, 11]. However, since the echo filter function g1

peaks at higher frequency than the Ramsey filter function g0, and because the flux noise is 1/f
type, the echo decay rate is better than the Ramsey decay rate, ΓE < ΓR, for any flux bias. The
relaxation rate Γ1 is observed to relatively constant over this range of flux.

This concept extends for N π-pulses in a CPMG experiment (Fig. 11C and Fig. 12). As
the number of pulses, N , increases, the filter function gN continues peak at higher and higher
frequencies, reducing the integrated noise seen by the qubit, and so the decay rates ΓN continue
to improve.

The filter functions in Eq. 124 and plotted in Fig. 10B all have the same integrated area.
Therefore, if the noise PSD is white noise (uniform with frequency), then there will be no
difference in the integrated noise for any number N . Similarly, if a system has a PSD that
increases with frequency, than adding more pulses will increase the noise seen by the qubit and
therefore decrease its coherence times.

3.7 Noise spectroscopy of a persistent-current flux qubit

In this section, we review several experiments which probe coherence metrics of a persistent-
current flux qubit during both free evolution (T1 and T2) and driven evolution (T1ρ and T2ρ =
TR), where the subscript ρ refers to “rotating frame,” and TR is the Rabi decay time. By ana-
lyzing the form of the decay function (see Table 3), we can extract information about the noise
spectra seen by the qubit in the laboratory frame. In turn, these pulse sequences can be used to
mitigate dephasing. The CPMG pulse sequence mitigates dephasing Tφ during free evolution,
and the rotary echo can mitigate dephasing Tφρ during driven evolution.

The device used in this section is a 4-junction persistent current flux qubit (see Fig. 13A)
with the small junction a factor α = 0.54 smaller in area than the remaining identically sized
junctions. The qubit states are coupled with a strength ∆ ≈ 5.4 GHz, EJ = 210 GHz, and
EC = 4 GHz. The qubit is read out using a DC SQUID, which is galvanically connected to the
qubit to leverage the kinetic inductance of the shared lines, approximately 30 pH, to increase
the readout signal. The device was fabricated at NEC using an aluminum double-angle shadow
evaporation process, and measurements were made at MIT. For more details regarding the qubit
parameters and the measurement setup, see Ref. [11].
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Fig. 12: CP, CPMG, and UDD dynamical decoupling [11]. A) Bloch sphere representation
of refocussing sequences. The Carr-Purcell (CP) sequence has all pulses in phase and equally
spaced. The Carr-Purcell-Meiboom-Gill (CPMG) sequence has the π-pulses in quadrature to
the π/2-pulses and equally spaced. The UDD sequence has the π-pulses in quadrature to the
π/2-pulses and the pulses are spaced sinusoidally in time. CPMG is less sensitive to pulse
imperfections than CP. For 1/f type noise, CPMG and UDD give similar performance.
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Note that in the following, the label T2 is simply used to designate a process (transverse
relaxation), even though the decay function need not be exponential. The actual decay functions
are listed in Table 3.

3.7.1 Inversion recovery: T1

Longitudinal relaxation in the qubit frame is measured via an inversion recovery experiment.
The qubit is prepared in its excited state, and the readout is delayed with respect to this prepara-
tion pulse in order to monitor the time it takes for the qubit to decay back to the ground state (see
pulse sequence in Fig. 13B). As the qubit is not begin driven during the decay period, inversion
recovery is a measure of energy decay during free evolution (Fig. 9A).

A typical decay trace taken at the qubit degeneracy point, f = 0.5, is shown in Fig. 13B [11].
In this example, T1 = 12 µs. For most superconducting qubits, the observed decay function is
exponential. However, the decay function can become non-exponential due to experimental fac-
tors, e.g., repeating an experiment too rapidly, which can lead to a non-equilibrium quasiparticle
accumulation.

By measuring thd T1 time versus qubit frequency, we were able to map the noise PSD at
frequencies above 5.4 GHz (see Fig. 14A) [11].

3.7.2 Free-induction decay (Ramsey): T ∗2

Transverse relaxation in the qubit frame is measured via a free-induction decay measurement,
or Ramsey measurement. The pulse sequence is shown in Fig. 13B, and it comprises a pair of
π/2 pulses. The first pulse brings the Bloch vector to the equator. In the qubit frame, the spin
will precess about the the qubit field ωq (see Fig. 9B). After a time τ , the second π/2 pulse
followed by measurement will project the state against the quantization axis. This projection as
a function of τ defines the decay function.

Fluctuations in the qubit frequency will cause the spin to precess at a faster or slower
rate, leading to dephasing. Due to 1/f -type flux noise, the dephasing decay function is typ-
ically Gaussian rather than exponential (see Table 3). Repeated trials of the experiment will
likely have different precession rates due to low-frequency fluctuations, and it is not possible
to “identically prepare” the qubit for each trial. This type of “temporal inhomogeneity” can
be compared with the spatially inhomogeneous field distribution in an atomic lattice. The “*”
is used to indicate inhomogeneous broadening. In Fig. 13B, the decay function is not purely
exponential, but is a combination an exponential function related to T1 and the Gaussian de-
phasing function for Tφ. The 1/e time (the time to reach a factor1/e of the initial value, not an
exponential decay time) is 2.5 µs for this device at f = 0.5. Despite the qubit being biased at
f = 0.5, there was enough residual ∆ noise in this qubit to dephase the qubit and keep T ∗2 < T1

(we were able to rule out second-order flux noise, see Ref. [11]).
It should be noted that the decay trace shown in Fig. 13B is usually interpreted within a

frame rotating at the qubit frequency. Detuning the frequency of the π/2 pulses then results
in oscillations at the detuning frequency as observed in Fig. 13B. We have instead chosen to
view the Ramsey experiment in the qubit frame to make a clear analogy between the T2 of
free-evolution (Fig. 9B) and the T2ρ of driven evolution (Fig. 9D).

Finally, by rapidly sampling repeated Ramsey measurements, we were able to measure
the noise PSD in the 10−4 - 102 Hz limit (see Fig. 14A) [11, 138].
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Fig. 13: Free- and driven evolution of a flux qubit. A) SEM image of the flux qubit and
SQUID [11]. B) Inversion recovery experiment to extract the relaxation time T1 (black line).
Hahn (spin) echo experiment to extract the echo time T2E. Both traces taken at the flux qubit
degeneracy point. C) Ramsey interferometry with inhomogeneously broadened T ∗2 = 2.5 µs,
measured at the flux qubit degeneracy point. D) Rabi oscillations at the flux qubit degeneracy
point. The Rabi time TR ≡ T2ρ is approximately T1 limited: TR = 4/3T1. E) Comparison
of Rabi and rotary echo pulse sequences. The rotary echo is the driven-evolution analog of
spin echo. F) 1/e decay times for a Rabi and rotary echo experiment for a particular driving
amplitude (Rabi frequency), and G) as a function of driving amplitude (Rabi frequency).
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3.7.3 Hahn echo (spin echo): T2E

The Hahn (spin) echo (see Section 3.6) is a Ramsey experiment with a single π-pulse located
midway between the two π/2-pulses. For low-frequency fluctuations, this π pulse serves to
refocus the errant precession of the Bloch vector. This is achieved (in an ensemble sense) by
“swapping” the leading and lagging spins on the equator such that they will all meet (refocus)
at the same point and time coincident with the second π/2-pulse. How “low” a frequency is
“low enough” is dictated by the filter function g1 described in Section 3.6, but, intuitively, the
noise cannot change significantly over the refocusing time.

The spin echo pulse sequence shown in Fig. 13B was implemented with the qubit biased
at f = 0.5, the first-order flux insensitive point. In this qubit, and at this bias point, the echo was
efficient, that is, T2E = 23 µs ≈ 2T1. This means that the observed decay trace is exponential
(it is limited by T1), and the dephasing time after refocussing exceeds 100 µs.

3.7.4 CPMG (multi-pulse refocussing): T (N)
2

Away from f = 0.5, where the qubit is more susceptible to flux noise, the echo was less efficient
as described in Section 3.6. In this case, adding additional, equally spaced π-pulses (CPMG)
improved the refocussing efficiency. This is because the filter function peak moves to higher
frequencies with larger numbers of pulses. Characterizing the decay functions for N -pulse
CPMG sequences in conjunction with the filter function enabled the reconstruction of the PSD
(see Fig. 10, Fig. 14A) [11].

3.7.5 Rabi oscillations: T2ρ ≡ TR

Decay during driven evolution is typically measured via a Rabi experiment (Fig. 13D). The
qubit is prepared in its ground state. A harmonic field then continuously drives the qubit state
for a time τ , and then a measurement projects the qubit state on the measurement axis. This
projection as a function of τ determines the Rabi decay function. The observed decay time at
f = 0.5 is TR = 13 µs, nearly T1 limited (TR ≈ 4/3T1).

The Rabi experiment can be viewed in the rotating frame (Fig. 9D) as “precession” about
the driving field ωR in the plane perpendicular to the driving field vector. This is analogous to
the Ramsey precession about the qubit field in the free-evolution case (Fig. 9D). Within this
language, the decay time TR is alternatively called T2ρ.

Unless limited by T1 (as it is here at the degeneracy point), the Rabi decay function is
generally not exponential. The corresponding decay function is somewhat complicated due to
low-frequency noise of the driving field and qubit parameters (see Table 3). Nonetheless, noise
at the Rabi frequency can be extracted using the functions in Table 3 to infer points on the PSD
(yellow dots, Fig. 14A)) [11, 186].

3.7.6 Rotary echo: T2ρE

The rotary echo pulse sequence (Fig. 13E) is the driven-evolution analog to the spin echo.
To implement rotary echo, the Rabi driving field is split into two equally sized sections, with
the driving field phase flipped 180 degrees for the second section. This results in the driving
field going from +X to −X in Fig. 9D. As a result, the spin “precesses” about the driving
field in the opposite direction, ideally returning to its starting point. If the driving field has
low-frequency amplitude fluctuations, the “precession frequency” (Rabi frequency) will also
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Fig. 14: Noise power spectral densities (δε noise and δ∆ noise) for of a flux qubit during
free- and driven evolution. A) Noise spectroscopy during free evolution [11]. A low-frequency
Ramsey method is used to obtain the PSD in the frequency range 10−4 to 102 Hz range. CPMG
is used to measure the noise in the 50 kHz - 20 MHz range. The yellow points are derived from
Rabi measurements (driven evolution). The high frequency noise is measured through inversion
recovery (green data). B) Noise spectroscopy of a flux qubit during driven evolution [186]. The
T1ρ pulse sequence is used to extract relaxation and dephasing in the with respect to the driving
field in the rotating frame. The δε noise exhibits Lorentzian features, corresponding to defects.
The defect at 1 MHz is observed to be active in a free-evolution echo experiment (inset).
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change. By reversing the direction of the spin evolution, this low-frequency noise is mitigated.
Fig. 13F shows a standard Rabi decay trace and the corresponding rotary echo decay trace for a
given driving field amplitude (Rabi frequency), and Fig. 13G presents the extracted decay times
as a function of the driving field amplitude (Rabi frequency). The rotary echo exhibits longer
decay times T2ρE than the Rabi oscillation decay time T2ρ = TR [140].

3.7.7 Spin locking: T1ρ

T1ρ is an inversion-recovery-type experiment during driven evolution, and spin locking is a
means to measure it. The spin-locking sequence is shown in Fig. 14B inset. The spin vector is
first brought to the equator with a π/2 pulse. Then, a driving field is applied colinear with the
spin vector (Fig. 9C). In the rotating frame and under resonant driving conditions, the driving
field establishes a new quantization axis, and the spin is now pointing along this axis. This is
analogous to the spin being collinear with the qubit quantization axis in the free-evolution case
(Fig. 9A). The distinction for the driven evolution case is that the Rabi frequency is typically
in the 10-100 MHz range, which is much smaller than the thermal energy at the operating
temperature. As a result, both the up and down relaxation rates Γ1ρ↑ and Γ1ρ↓ contribute to
depolarization. And, as with T1, the decay function for T1ρ tends to be exponential provided the
noise is “regular” about the Rabi frequency, which it generally is (see Table 3). The exponential
decay function (with no oscillations) is straightforward to analyzer compared with the relatively
complicated Rabi decay function. Using the T1ρ method, we extracted the noise PSD during
driven evolution over a frequency range 50 kHz - 200 MHz for both δε and δ∆. Interestingly,
we observed two Lorentzian features in the δε noise during driven evolution. The 1-MHz feature
was also manifest in the free-evolution spin-echo experiment (inset, Fig. 14B), causing a sharp
drop in coherence around 1 µs when the echo filter function passes through 1MHz.

4 Control of superconducting qubits in the strong-driving
limit

Due to their relatively large size, superconducting artificial atoms can be strongly coupled to
their external control fields. It is this feature, along with their quantum coherence, that we uti-
lize in the present section. A large-amplitude harmonic control field can drive an artificial atom
throughout its energy-level spectrum. When driven through an avoided level crossing, a Landau-
Zener-Stückelberg (LZS) transition occurs. This is a coherent process akin to a beamsplitter for
photons, taking an input state of the atom and outputting a superposition of states. Repeated
passages through an avoided crossing act as an atom interferometer, causing the atomic super-
position state to interfere quantum mechanically with itself. Since the weighting of the superpo-
sition state depends sensitively on the size of the avoided crossing and the velocity with which
it is traversed, the quantum interference reflects the energy spectrum of the artificial atom. In
turn, the quantum interference can be leveraged to facilitate non-adiabatic quantum control.

We begin this sesction with an overview of Landau-Zener-Stückelberg (LZS) transitions.
We then present three experimental works that utilize LZS transitions in a strongly-driven
persistent-current qubit [127, 128]. The first is Mach-Zehnder-type interferometry between
repeated LZS transitions [38], for which we observed quantum interference fringes in n-photon
transition rates, with n=1 . . . 50 [39]. The second is microwave-induced cooling [44], by which
we achieved effective qubit temperatures less than 3 mK, a factor 10-100 times lower than
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Fig. 15: Artificial atom (persistent current qubit) and measurement set-up. A) Schematic
of the qubit and surrounding DC SQUID readout. B) Double well qubit potential comprising
energy levels for static magnetic flux bias δfdc about Φ0/2, where Φ0 is the superconducting
flux quantum. Diabatic states of the left (right) well corresponds to a persistent current with
clockwise (counterclockwise) circulation. At detuning δfdc = 0, the double-well potential is
symmetric and the diabatic-state energies are degenerate. C) Qubit excitation and read-out
pulse sequence. The qubit is first prepared in its ground state with a harmonic cooling pulse
with amplitude Vc and frequency νc. Quantum-state transitions are induced with a subsequent
harmonic RF pulse with amplitude V and frequency ν. The qubit state is read-out using the
DC SQUID switching response. D) Qubit step. Cumulative switching current distribution of the
SQUID for each δfdc value following a 3-µs RF driving pulse at 1.2 GHz applied to the qubit.
Resonant multiphoton transitions (of order n) are observed between states |L〉 and |R〉. E) The
switching distribution along the dashed-dotted line discriminates between states |L〉 and |R〉.

the environmental temperature. The third is amplitude spectroscopy [50, 51], a spectroscopy
technique that monitors the system response to amplitude rather than frequency. Amplitude
spectroscopy allowed us to probe the energy spectra of our artificial atom from 0.01 - 120 GHz,
while driving it at a fixed frequency equal to 0.16 GHz. Finally, we consider the application of
LZS transitions to quantum information science and technology.

4.1 Flux qubit parameters
In this section, we use a superconducting persistent-current qubit to implement an artificial
atom [127, 128]. In this implementation, the persistent-current qubit is a superconducting loop
interrupted by three Josephson junctions (Fig. 15A). When biased with a static magnetic flux
fdc ∼ Φ0/2, where Φ0 is the superconducting flux quantum, the system assumes a double-well
potential profile (Fig. 15B). The diabatic state of the left (right) well corresponds to a persistent
current Ip with clockwise (counterclockwise) circulation. The lowest two diabatic energy levels
have a separation ε = 2Ipδfdc linear in the flux detuning δfdc ≡ fdc − Φ0/2. Higher-excited
states of the double-well potential (see Fig. 19C) will be considered in Subsections 4.4 and 4.5.

The two-level Hamiltonian for the lowest two diabatic states is shown in Eq. 132. At



Superconducting Qubits A4.49

detuning δfdc = 0, the double-well potential is symmetric and the diabatic-state energies are
degenerate. At this “degeneracy point,” resonant tunneling between the diabatic states opens
an avoided level crossing of energy ∆. Here, the qubit states are σx eigenstates, corresponding
to symmetric and anti-symmetric combinations of diabatic circulating-current states. Detuning
the double-well away from this point tilts the double well, allowing us to tune the eigenstates
and eigenenergies of the artificial atom. Far from the degeneracy point, the qubit states are
approximately σz eigenstates and have well-defined circulating current. The qubit is read out
using a hysteretic DC SQUID (superconducting quantum interference device), a sensitive mag-
netometer that can distinguish the flux generated by circulating current states.

In addition to the static flux biases, the artificial atom is controlled and read out using the
pulses illustrated in Fig. 15C. As we describe below, the qubit is first prepared in its ground state
using a harmonic cooling pulse with amplitude Vc and frequency νc. Quantum-state transitions
are then driven using a harmonic RF pulse with amplitude V and frequency ν. These fields are
mutually coupled to the qubit through a small antenna. This is followed by a SQUID readout
current pulse using the “sample and hold” technique [30, 38]. If the sample current exceeds
the SQUID switching current, a voltage pulse will appear at the output during the hold phase.
Threshold detection looks for the presence or absence of a SQUID voltage, and this constitutes
a digital measurement of the qubit state. Alternatively, although not used in these experiments,
we have incorporated the SQUID into a resonant circuit and realized qubit readout via the shift
in resonance frequency and phase for both the linear and non-linear resonance regimes [87, 91].

The “qubit step” is shown in Fig. 15D as a function of the SQUID sample current and the
flux detuning. The diabatic states |L〉 and |R〉 correspond to different levels of sample current
(dashed lines) located symmetrically about the degeneracy point δfdc=0. This plot constitutes
a cumulative switching current distribution of the SQUID for each δfdc value. Additionally,
a 3-µs RF pulse at 1.2 GHz is applied to the qubit, and resonant transitions can be observed
as fingers extending down (up) from state |L〉 (|R〉) when n×1.2 GHz becomes resonant with
the energy-level separation. A best-estimator (dashed-dotted line) can be determined to provide
the best statistical discrimination between states |L〉 and |R〉. The resulting qubit step with its
saturated n-photon resonances along the best estimator line is shown in Fig. 15E.

The device used in this work was fabricated at Lincoln Laboratory using a fully-planarized
niobium trilayer process and optical lithography. It has a critical current density Jc ≈ 160 A/cm2,
and the characteristic Josephson and charging energies are EJ ≈ (2π~)300 GHz and EC ≈
(2π~)0.65 GHz respectively. The ratio of the qubit JJ areas is α ≈ 0.84, and ∆ ≡ ∆0,0 ≈
(2π~)10 MHz. Although dependent on the flux detuning, the approximate values for coherence
times are: interwell relaxation time T1 ∼ 100µs, intrawell relaxation time T1 ∼ 0.1µs, homo-
geneous transverse decay time T2 ∼ 20 ns, inhomogeneous transverse decay time T ∗2 ∼ 10 ns.
The experiments were performed in a dilution refrigerator at a base temperature of 20 mK. The
device was magnetically shielded, and all electrical lines were carefully filtered and attenuated
to reduce noise (see Ref. [50] for details).

4.2 Landau-Zener transitions
Landau-Zener-Stückelberg (LZS) transitions occur when a quantum system is driven through
an energy-level avoided crossing [141, 142, 143]. The resulting quantum dynamics of the LZS
mechanism [144] in driven systems [145] have been developed [146, 147] within a two-level
coherent scattering formalism [148, 149, 150, 151] with potential application to quantum infor-
mation science and technology [150, 151, 152, 153, 154].
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Fig. 16: Landau-Zener-Stückelberg transition. A) Adiabatic limit: hζ � ∆2; the probability
of a transition from state |R〉 to state |L〉 approaches unity. B) Nonadiabatic limit: hζ �
∆2; the probability of a transition from state |R〉 to state |L〉 approaches zero. C) Coherent
superposition of states. At intermediate sweep velocities (hζ ∼ ∆2) a superposition state
α|L〉 + β|R〉 results from an excursion through the avoided crossing. A phase difference ∆θ12

accrues due to the energy difference between the states |L〉 and |R〉. D) Quantum interference
during a second excursion through the avoided crossing. Interference fringes appear at half-
integer and integer values of ∆θ12/2π, which is tunable via the drive amplitude.
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We model a LZS transition at a single crossing using the two-level Hamiltonian

H = −1

2

(
ε(t) ∆

∆ −ε(t)

)
, (132)

in which ε is the energy difference between diabatic-state energy levels (dashed lines in Fig. 16A),
and ∆ is the size of the avoided crossing and corresponds to the coupling strength between di-
abatic states |L〉 and |R〉.

The system is prepared in state |R〉 at a static value ε0 � ∆ far from the avoided crossing
(blue dot, Fig. 16A) and driven longitudinally from that point by making ε(t) time dependent.
We distinguish here between “weak driving,” in which the system drive is not large enough to
reach the avoided crossing, and “strong driving” for which the avoided crossing is traversed.
Under strong-driving conditions, the asymptotic probability PD-LZS of a transition between dia-
batic states,

PD-LZS ≡ 1− PE-LZS = 1− exp
−π∆2

2~ζi
, (133)

is governed by the relative-energy sweep rate ζi

ζi =
dε(t)

dt
|t=ti (134)

evaluated at the time t = ti at which the system is swept through the avoided crossing. In
the original LZS formulation, the system was driven with a fixed sweep rate, whereas we will
later consider a harmonically driven system. We also note that we have elected to monitor the
probability PD-LZS of a transition between the diabatic states |L〉 and |R〉, because our readout
detector is sensitive to changes in diabatic state. This can be written with no loss of generality
in terms of the probability PE-LZS of a transition between the system eigenstates.

There are two strong-driving limits characterized by the relative sizes of the sweep ve-
locity ζ and the avoided crossing ∆. In the adiabatic limit (Fig. 16A), the sweep velocity is
small (hζ � ∆2) and the probability of a transition from state |R〉 to state |L〉 approaches
unity, PD-LZS → 1. In this case, the system dynamics are slow enough that the system adia-
batically follows the ground eigenstate through the avoided crossing. In the nonadiabatic limit
(Fig. 16B), the sweep velocity is large (hζ � ∆2) and the probability of a transition approaches
zero PD-LZS → 0. In this case, the dynamics are too fast for the system to follow; the sys-
tem remains in diabatic state |R〉 and, thereby, effectively jumps the energy gap at the avoided
crossing.

More generally, a superposition state α|L〉 + β|R〉 results from an excursion through the
avoided crossing, as illustrated in Fig. 16C. Following an idea discussed by Shytov et al. [150],
the LZS transition acts as a beamsplitter for the atomic state. The amplitudes α and β are deter-
mined by a unitary transformation UD-LZS, effectively a 2× 2 “beamsplitter matrix” comprising
complex reflection r and transmission t coefficients related to the adiabaticity parameter ∆2/~ζ
present in Eq. 133 [144] such that |t|2 = 1−PD-LZS, |r|2 = PD-LZS, and U †D-LZSUD-LZS = I . Note
that we have defined |t|2 and |r|2 from the perspective of a beamsplitter, which “transmits” (“re-
flects”) an input state to the same (opposite) diabatic state, respectively. After the transition,
a relative phase ∆θ12 accrues due to the energy difference between the states |L〉 and |R〉. If
the drive ε(t) then returns the system through the avoided crossing a second time, the atomic
state collides and quantum mechanically interferes with itself during the second LZS transition
(Fig. 16D). The cumulative result is an atom-state interferometer whose output state depends
on the LZS transition amplitudes and the interference phase.
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An analogy can be made to a Mach-Zehnder interferometer: the atomic states play the
role of the photon modes, the LZS transitions play the role of the photon beamsplitters, and the
energy-level splitting, which determines the interference phase, plays the role of optical path
length difference. The quantum interference is robust provided the evolution time of the state
through the interferometer is short compared with the atom’s coherence times. In addition to
superconducting artificial atoms [38, 39, 27, 40, 41, 33], this concept is generally applicable to
other solid-state artificial atoms [158, 159] and generalized spin systems [160] (e.g., molecular
magnets [161, 162, 163], natural atoms [164, 165], and molecules [166, 167, 168]) that exhibit
avoided level crossings, and it is extensible to multiple energy levels as we demonstrate in
Section 19.

4.3 Mach-Zehnder-type interferometry
The structure of the n-photon spectroscopy peaks seen in Fig. 15E consists of regularly-spaced
resonances positioned according to the condition n×1.2 GHz being resonant with the energy
level separation. Notably, however, for this particular value of driving amplitude, the n=1, 3, and
6 photon peaks are missing. As we describe in this section, the presence and absence of these
peaks arise from Mach-Zehnder-type quantum interference at a level crossing. The interference
phase can be tuned through the driving amplitude, and leads to a “Bessel staircase” in the ob-
served spectroscopy. The interference oscillations are known as Stückelberg oscillations [143],
and they have been observed in both artificial [38, 39, 40, 41] and natural [164, 165, 166] atomic
systems.

In a conventional Mach-Zehnder interferometer, an optical signal is passed through two
beamsplitters. The first beamsplitter coherently divides the signal into two output paths, which
may have different effective optical path lengths. These paths are then recombined at the second
beamsplitter, where the signal waves interfere and exit the interferometer. The measured output
exhibits interference fringes depending on the relative path length.

Here, we instead utilize LZS transitions at level crossings as beamsplitters for the atomic
state [150]. We drive the persistent-current qubit with a harmonic driving field of the form

ε(t) = ε0 + A sinωt (135)

with ω = 2πν the driving frequency and A > ε0 the field amplitude (in units of energy),
which is proportional to the RF voltage at the source. As illustrated in Fig. 16D, the qubit state
undergoes two LZS transitions during one period of the driving field. The first LZS transition at
time t1 splits the qubit into a superposition of excited and ground states. A relative phase ∆θ12

accumulates

∆θ12 =
1

~

∫ t2

t1

ε(t)dt, ε(t) = ε|R〉(t)− ε|L〉(t) (136)

until the second LZS transition at time t2, at which point the qubit state collides with itself and
interferes. Interference fringes appear at half-integer and integer values of ∆θ12/2π, which is
tunable via the drive amplitude.

It is clear, however, that a second phase must also play a role in this problem, since
the qubit state continues to evolve for the remainder of the driving period. It is physically
meaningful to consider the total phase θ accumulated over a single period:

θ =
1

~

∮
ε(t)dt = 2πε0/~ω, (137)
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Fig. 17: Mach Zehnder interference. A) Measured qubit population as a function of excitation
amplitude and flux detuning in two excitation regimes. Left: ν = 270 MHz. The resonance
linewidth is smaller than the excitation frequency (B, top); individual n-photon resonances
can be resolved and a Bessel staircase is observed. Right: ν = 90 MHz. The resonance
linewidth is larger than the excitation frequency (B, bottom); individual resonances are no
longer resolved but coherent interference is still observed. C) Interference fringes in qubit
population for ν = 270 MHz (left) ν = 90 MHz (right) along the vertical dashed lines in A.
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which is independent of the driving amplitude. Over many periods of the driving field, the
cascaded pairs of LZS transitions (cascaded interferometers) will constructively interfere pro-
vided θ = 2πn. One can view this as a “time-domain” formulation for the familiar n-photon
resonance condition

ε0,n = nhν (138)

where n is the number of photons involved in the transition. It is only when the product nhν
equals the energy separation ε0,n that the cascaded LZS transitions lead to a net buildup of
interference fringes. These oscillations are related to photoassisted transport [169, 170, 171]
and Rabi oscillations [27, 33] in the multiphoton regime.

Mach-Zehnder-type interference in the discrete-resonance limit driven towards saturation
is shown in Fig. 17A for driving frequency ν = 270 MHz. This frequency is larger than the
resonance linewidth (Fig. 17B), and so individual n-photon resonances can be resolved. There
are two main features observable in this plot. The first is the presence of equally-spaced n-
photon transitions as a function of flux detuning, symmetrically located about the qubit step at
δfdc = 0. As one might expect, the onset of the higher-photon transitions requires larger driving
amplitudes. Remarkably, we observe up to 50-photon transitions in this scan. The second
main feature is that for each n-photon resonance, the spectroscopy appears and disappears as a
function of amplitude, which sweeps the interference phase ∆θ12. For example, 14 oscillation
lobes are visible for the 1-photon transition. A vertical slice of the spectroscopy (dashed white
line in Fig. 17A) is plotted in Fig. 17C; at this particular amplitude, one can see the enhancement
and suppression of the spectroscopy peaks as was observed in Fig. 15E.

The Mach-Zehnder interference for an n-photon transition yields a modified amplitude-
dependent matrix element [38, 27, 160]

∆n = ∆Jn(λ) (139)

where Jn(λ) is the nth-order Bessel-function, and its argument λ = A/~ω is the dimensionless
driving amplitude (see Appendix B). Intuitively, the Bessel-function dependence arises because
the qubit is driven harmonically through energy levels that are linear in flux detuning and, as
a result, the interference phase accumulates with a sinusoidal time dependence. The interfer-
ence fringes for each n-photon resonance are related to the matrix element squared, ∆2

n. At
specific amplitudes, there is a complete destructive interference of a transition due to the ze-
ros of Jn(λ); this is the coherent destruction of tunneling [155, 156, 157] condition for driven
n-photon transitions [38, 39].

In the discrete resonance limit, n-photon resonances are distinguishable, because the co-
herence time of the qubit is sufficiently longer than the driving period. By reducing the fre-
quency to ν = 90 MHz (Fig. 17A, right panel), we effectively made the drive period compara-
ble with the linewidth, νT ∗2 ∼ 1 (Fig. 17B). In this spectroscopy plot, the individual n-photon
resonances are no longer resolvable. However, the Mach-Zehnder interference fringes (verti-
cal slice, Fig. 17C) are clearly visible, because the qubit remains coherent during the critical
fraction of the drive period during which the phase ∆θ12 accumulates and the Mach-Zehnder
interference occurs. Intuitively, provided νT1 � 1, the output populations of each quantum
interferometer are then preserved (frozen) until the subsequent interferometer is reached in the
following period; therefore, although the resonance condition is lost, the Mach-Zehnder quan-
tum interference remains. This behavior can be contrasted with driven Rabi oscillations, for
which there would be no signature of coherence in the limit νT ∗2 ∼ 1.
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Fig. 18: Cooling of and artificial atom via an ancillary excited state. A) External excitation
transfers the thermal population from state |0L〉 to state |1R〉 (straight line) from which it
decays into the ground state |0R〉. Wavy lines represent spontaneous relaxation and absorption
leading to equilibration. B) Qubit step at Tbath = 150 mK in equilibrium with the bath (top)
and after a 3-µs cooling pulse at 5 MHz (bottom). The average level populations exhibit a qubit
step about δfdc = 0, with a width proportional to Tbath (top) and Teff � Tbath (bottom). C)
Schematic level diagram illustrating resonant and adiabatic cooling. |0L〉 → |1R〉 transitions
are resonant at high driving frequency ν (blue lines) and occur via adiabatic passage at low
ν (red lines). ∆00 and ∆01 are the tunnel splittings between |0R〉 - |0L〉 and |0L〉 - |1R〉.
D) Optimal cooling parameters. State |0R〉 population vs. flux detuning δfdc and driving
amplitude A with ν = 5 MHz, ∆tc = 3µs, and Tbath= 150 mK. Optimal conditions for cooling
are realized at A = A∗, where A∗ is defined in C. E) Cooling at driving frequencies ν = 800,
400, 200 and 5 MHz. State |0R〉 population vs. δfdc for the cooled qubit and for the qubit in
thermal equilibrium with the bath (black lines, Tbath = 300 mK). Measurements for ν = 800,
200 and 5 MHz are displaced vertically for clarity. A cooling factor of 100, independent of
detuning, is obtained in the adiabatic limit (5 MHz).
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4.4 Microwave cooling

The previous discussion involved driving transitions in the lowest two energy levels in the
double-well potential of our artificial atom (Fig. 18A), which constitute the two-level qubit
subsystem of a more complex energy level diagram (Fig. 19C). When higher-excited states are
accessed, the driven system behavior can be markedly different from the population saturation
observed when only two levels are involved. For example, at least three levels are required
to achieve population inversion, and such a multi-level artificial atom coupled to a microwave
cavity has been used to demonstrate masing (microwave lasing) [172]. In that work, Josephson
quasi-particle states were driven to achieve inversion. Alternatively, population inversion can
be established by accessing an ancilliary excited state via direct or LZS transitions. This will be
briefly discussed in the next section.

Here, by reversing the cycle that leads to population inversion, we show that one can
pump population from the qubit excited state |0L〉 to the qubit ground state |0R〉 (Fig. 18A) via
an ancillary energy level |1R〉. In the case where the population in |0L〉 results from thermal
excitation, the transfer of population to |0R〉 effectively cools the qubit by lowering its effective
temperature. This kind of active cooling represents a means to initialize and reset qubits with
high fidelity, key elements for quantum information science and technology. Alternatively, the
pumping mechanism can be used to refrigerate environmental degrees of freedom [173], or to
cool neighboring quantum systems [46, 47].

More explicitly, for a qubit in equilibrium with its environment, the population in |0L〉
that is thermally excited from |0R〉 follows the Boltzmann relation

p0L/p0R = exp[−ε/kBTbath], (140)

where p0L,0R are the qubit populations for energy levels ε0L,0R, ε = ε0L − ε0R, kB is the Boltz-
mann constant, and Tbath is the bath temperature. To cool the qubit subsystem below Tbath, a
microwave magnetic flux of amplitude A and frequency ν targets the |0L〉 → |1R〉 transition,
driving the state-|0L〉 thermal population to state |1R〉, from which it quickly relaxes to the
ground state |0R〉. Efficient cooling only occurs when the driving-induced population transfer
to |0R〉 is faster than the thermal repopulation of |0L〉. The hierarchy of relaxation and absorp-
tion rates required, Γ0R,1R � Γ0L,1R,Γ0L,0R, is achieved in our system owing to a relatively
weak tunneling between wells, which inhibits the interwell relaxation and absorption processes
|1R〉 → |0L〉 and |0R〉 → |0L〉, compared with the relatively strong intrawell relaxation pro-
cess |1R〉 → |0R〉.

Figure 18B shows the qubit step at Tbath = 150 mK in equilibrium with the bath (top) and
after a 3-µs cooling pulse at 5 MHz (bottom). Under equilibrium conditions, the average level
populations exhibit a thermally-broadened qubit step about δfdc = 0, with a width proportional
to Tbath. The presence of microwave excitation targeting the |0L〉 → |1R〉 transition acts to
increase the ground-state population and, thereby, sharpens the qubit step. Cooling can thus
be quantified in terms of an effective temperature Teff < Tbath, a signature that is evident from
the narrowing of the qubit steps in Fig. 18B after cooling. More precisely, using the notation
from Fig. 16, the effective qubit temperature is obtained by fitting an effective temperature that
would have been required in equilibrium to achieve the observed qubit population p0R,

p0R =
ε√

ε2 + ∆2

[
tanh

(√
ε2 + ∆2

2kBTeff

)
+ 1

]
. (141)
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Universal cooling (cooling that is independent of flux detuning) occurs near an optimal
driving amplitude A∗ (Fig. 18C). This is demonstrated in Fig. 18D where we present the |0R〉
state population Psw measured as a function of the microwave amplitude A and flux detuning
δfdc for ν = 5 MHz. Cooling and the diamond feature can be understood in terms of the energy
level diagram (Fig. 19C). As the amplitude of the microwave pulse is increased from V = 0,
population transfer first occurs when the ∆0,0 avoided crossing is reached, i.e. A > |δfdc|;
this defines the front side of the observed diamond symmetric about the qubit step (see also
Fig. 17A). For amplitudes A∗/2 ≤ A ≤ A∗, the ∆0,1 (∆1,0) side avoided crossing dominates
the dynamics, resulting in a second pair of thresholds A = A∗ − |δfdc|, which define the back
side of the diamond. In the region outside of the diamond’s backside, the qubit is cooled.
As the diamond narrows to the point A = A∗, the narrowest qubit step is observed. This is
the universal cooling condition: only one of the two side avoided crossings (∆0,1 or ∆1,0) is
reached and, thereby, strong transitions with relaxation to the ground state result for all δfdc. In
contrast, for A > A∗, both side avoided crossings (∆0,1 and ∆1,0) are reached simultaneously
for |δfdc| < A − A∗, leading once again to a large population transfer between |0R〉 and |0L〉,
and opening the second diamond feature (see Fig. 19).

The cooling exhibits a rich structure as a function of driving frequency and detuning,
resulting from the manner in which state |1R〉 is accessed (Fig. 18C). Transitions occur via
a (multiphoton) resonant or adiabatic passage process when the driving frequency is high or
low enough, respectively [39, 44]. At high frequencies (800 and 400 MHz in Fig. 18E) well-
resolved resonances of n-photon transitions are observed and cooling is thus maximized near
resonances. At intermediate frequencies (400 and 200 MHz), Mach-Zehnder interference at the
side avoided crossing ∆01 becomes more prominent and modulates the intensity of the n-photon
resonances [38, 39]. Below ν = 200 MHz, individual resonances are no longer discernible,
but as in Fig. 17C, the modulation envelope persists [39]. At the lowest frequencies (ν <
10 MHz), state |1R〉 is reached via adiabatic passage through the ∆01 crossing (Fig. 18C), and
the population transfer and cooling become conveniently independent of detuning (see ν =
5 MHz in Fig. 19E). As shown in Fig. 18E, we achieve an effective qubit temperature Teff =
3 mK, even for Tbath = 300 mK. In our qubit, our determination of Teff was limited primarily
by decoherence (linewidth), which limited the resolution with which we could distinguish the
states |0R〉 and |0L〉 near degeneracy. Nonetheless, we can estimate the ideally resolvable
cooling factor αc for this type of cooling process using Eq. 140,

αc ∼
Tbath

Teff

=
ε1R→0R

∆
, (142)

where ε1R→0R ≈ h × 25 GHz is the energy separation where the relaxation |1R〉 → |0R〉
occurs and ∆ ≈ h × 0.01 GHz for our qubit, yielding a cooling factor αc ∼ 2500. For a bath
temperature Tbath = 50 mK, this would correspond to an effective temperature Teff = 20 µK
in our qubit. Using this approach, in principle, lower temperatures can be resolved in systems
with smaller energy gaps.

Cooling a qubit in equilibrium with the bath requires a characteristic cooling time. In
turn, a cooled qubit will thermalize to the environmental bath temperature over a characteristic
equilibration time. The relationship between these two times determines if it is possible to
drive the qubit while it is still cold. We found in this qubit that equilibration times are at least
one order of magnitude larger than cooling times at Tbath < 250 mK and up to three order of
magnitude larger at Tbath < 100 mK [44]. This allowed us ample time to drive the qubit after
cooling it. The implementation of an active cooling pulse prior to a generic driving pulse is
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highly advantageous. On the one hand, it sensibly shortens measurement times, enabling us to
acquire data at repetition rates that far exceed the intrinsic equilibration rate due to interwell
relaxation after each measurement trial. By adopting active cooling, we gained a factor 50 in
data acquisition speed, limited by the bandwidth of our readout circuit. On the other hand,
by analogy to the cooling of trapped ions and atoms, active cooling greatly reduces thermal
smearing, allowing us to analyze features in the data that would have been hidden otherwise.
This type of active cooling protocol was required to obtain the detailed, clean data in Fig. 17.
In fact, the necessity of active cooling becomes even more evident in the next section where,
without the cooling pulse, the observed level of detail could not have been resolved over such a
large parameter space in practical acquisition times.

4.5 Amplitude spectroscopy
Since Newton’s dispersion of light into a continuous color ”spectrum,” spectroscopy has been
viewed primarily as a frequency-based technique. Ångström, Bunsen, Foucault, Kirchhoff, and
many others identified unique spectral lines for elements and compounds based on the emission
and absorption of radiation at various frequencies. The series of spectral lines of hydrogen are
named for Balmer and Rydberg, who observed them within and beyond the visible wavelengths.
Such frequency-dependent absorption and emission spectroscopy played a fundamental role in
the development of quantum mechanics and the “new” atomic theory by identifying discrete
energy levels. With the invention of coherent microwave (maser) and optical (laser) sources,
high-intensity radiation with tunable, narrow spectral linewidth allowed targeted absorption
spectroscopy of atoms and molecules with high frequency resolution [174, 175].

However, the application of broadband frequency spectroscopy is not universally straight-
forward. This is particularly relevant for artificial atoms engineered from solid-state materials
which, when cooled to cryogenic temperatures, assume quantized energy levels that extend into
microwave and millimeter wave regimes (10-300 GHz). Although certainly not an impossible
task, a broadband frequency-based spectroscopic study of these atoms in excess of around 50
GHz becomes extremely challenging and expensive to implement due to numerous frequency-
dependent effects (e.g., frequency dispersion and the requisite tolerances to control impedance).

Amplitude spectroscopy is an alternative approach to broadband spectroscopic charac-
terization of a quantum system. With amplitude spectroscopy, spectroscopic information is
obtained from the system response to driving-field amplitude at a fixed frequency. The result-
ing spectroscopic interference patterns, “spectroscopy diamonds,” are mediated by multilevel
LZS transitions and Mach-Zehnder-type interferometry, and they serve as a fingerprint of the
artificial atom’s multilevel energy spectrum. The energy spectrum is then determined by ana-
lyzing the atomic fingerprint. In this way, the amplitude spectroscopy technique complements
frequency spectroscopy: although a less direct approach, it allows one to probe the energy level
structure of a quantum system over extraordinarily large (even practically prohibitive) band-
widths by circumventing many of the challenges associated with a frequency-based approach.

In general, the spectroscopy diamonds arise due to an interplay between the static flux
detuning δfdc and driving amplitude V . As described in Sections 4.2 and 4.3, transitions occur
when an avoided crossing is reached for a particular set of values (δfdc,V ). For example, at
a flux detuning δf ∗dc, the diamond boundaries occur at V = V1, V2, V3.... (Fig. 19 A and C).
The Mach-Zehnder interference due to a phase accumulation ∆θq,q′ at a given avoided crossing
∆q,q′ can be modulated by varying both δfdc and V .

There are two important contributions to the diamond spectroscopy patterns: LZS-mediated
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Fig. 19: Amplitude spectroscopy with long-pulse driving towards saturation. Spectroscopy dia-
monds obtained at driving frequencies ν = 185 MHz (A) and ν = 700 MHz (B). The color scale
represents the net qubit population in state |q, R〉, whereR (L) labels diabatic states of the right
(left) well of the qubit double-well potential, and q = 0, 1, 2, ... labels the longitudinal modes.
The excitation amplitude V is swept for each static flux detuning δfdc. The diamond edges mark
the driving amplitude V for each value of δfdc when an avoided level crossing is first reached
(amplitudes V1 − V5 for δfdc = δf ∗dc). C Schematic energy-level diagram illustrating the rela-
tion between V and the avoided crossing positions for δfdc = δf ∗dc. The arrows represent the
amplitudes V1 − V5 in A. (D) Zoom in of 185-MHz interference patterns (box region, Fig. 19A).
The arrows point to lines of constant phase (2N − 1)π along which LZS transitions are likely
to occur for the avoided crossings ∆0,0, ∆0,1, and ∆1,0.
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transitions and intrawell relaxation. In Fig. 19D, we show a subset of the diamond interference
pattern in Fig. 19A. Arrows indicate lines of constant phase accumulation ∆θq,q′ = (2N − 1)π
in (δfdc,V )-space that leads to LZS transitions at each of the three listed avoided crossings, ∆0,0,
∆0,1, and ∆1,0. Where these lines cross, competition (coordination) between avoided crossings
act to suppress (enhance) the net transition rate between pairs of energy levels. These crossing
lines are the reason for the checkerboard patterns observed inside and outside the diamonds.

The second contribution, intrawell relaxation, provides another means to connect energy
levels and results in both cooling and population inversion. In Section 4.4, Fig. 18C, ∆0,1

mediated the transition |0L〉 → |1R〉, and intrawell relaxation then mediated the transition
|1R〉 → |0R〉; the net result was cooling, since the flux δfdc was positive, making |0R〉 the
ground state. However, in Fig. 19D δfdc is negative. Furthermore, in the upper-right corner of
Fig. 19D, both crossings ∆0,1 and ∆1,0 are accessed. In the bright red regions, ∆0,1 still tends
to cause transitions |0L〉 → |1R〉, and relaxation puts that population in state |0R〉. However,
the interference condition at ∆1,0 on the other side of the energy level diagram (Fig. 19C) tends
to keep the population in |0R〉. Therefore, population builds in state |0R〉, the first excited state
for negative flux detuning, resulting in strong population inversion. Varying the interference
conditions at ∆0,1 and ∆1,0 by changing (δfdc,V ) causes the observed modulation between
population inversion and cooling.

We have developed several techniques for extracting information about the energy levels
from the spectroscopy interference patterns [50, 51]. The key metrics are the positions of the
avoided crossings in flux, the values of the splittings ∆q,q′ , and the slopes of the energy levels.
With this information, one can reconstruct a large portion of the energy level diagram.

The positions of the avoided crossings can be determined precisely from the diamond
boundaries, because the onset of each diamond is associated with LZS transitions at a particular
level crossing. The splitting of each avoided crossing can be obtained essentially by fitting the
LZS formula in Eq. 133 to the Mach-Zehnder interference patterns. Alternatively, one can study
the dynamical population transfer between states using the pulsed, short-time implementation
of amplitude spectroscopy [50].

The energy level slopes can be determined by two means. The first is by relating the sep-
aration between interference nodes to the expected phase accumulation ∆θ12, since the phase
accumulation depends sensitively on the energy-level slope. Alternatively, we show with Rud-
ner et al. in Ref. [51] that the two-dimensional Fourier transform of the diamond patterns yields
a family of one-dimensional sinusoids in Fourier space; the periods of these sinusoids are re-
lated to the energy-level slopes. The intuition is that the Fourier transform inverts the energy
domain of the spectroscopy to the time domain (scaled by ~). This means that the sinusoids
in Fourier space image the time-dependence of the quantum phase of the qubit, which, in turn,
depends sensitively on the energy-level slopes.

Using amplitude spectroscopy, we were able to scan the energy level diagram continu-
ously beyond the fourth energy-level avoided crossing (∆0,0 . . .∆0,4, ∆4,0) with splitting values
ranging from ∆0,0 ≈ 0.01 GHz to ∆0,4,∆4,0 ≈ 2.2 GHz [50]. The equivalent information ob-
tained using frequency spectroscopy would have required scanning frequencies from 0.01 GHz
out to beyond 100 GHz (each avoided crossing is separated by approximately 25 GHz). Re-
markably, with amplitude spectroscopy, the entire scan performed in Fig. 19A was performed
at a fixed frequency ν = 185 MHz. The scan in Fig. 19B shows the amplitude spectroscopy
of the same system for a fixed frequency ν = 700 MHz, clearly in the discrete resonance
limit. The resonance condition adds another constraint, making a more complex and interesting
checkerboard pattern.
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4.6 Summary and applications

Strongly driving a superconducting artificial atom through an avoided level crossing results in
a Landau-Zener-Stückelberg transition, which, in general, creates a superposition of atomic
states whose weighting depends on the size of the avoided crossing and the velocity with which
it is traversed. In this sense, as we discussed in Section 4.2, the LZS mechanism acts as a
beamsplitter for artificial atoms.

In Section 4.3, we described how harmonically driving the system cascades two LZS tran-
sitions per driving period, resulting in an atomic analog to a Mach-Zehnder interferometer. The
relative phase acquired between LZS transitions is the interference phase of the interferometer,
and it is tunable by the driving amplitude. The buildup of population over many driving peri-
ods exhibits Stückelberg oscillations as a function of the driving amplitude (interference phase)
due to the cascaded Mach-Zehnder-type interference effect. To observe these oscillations, the
coherence time must only be longer than the small portion of the drive period when the inter-
ference phase accrues, and the relaxation time must be long enough to maintain the population
until readout.

The total phase accumulated over one period, in contrast, is amplitude independent. For
coherence times longer than the drive period, cascaded interferometers yield a net population
change when this round-trip phase accumulation is 2πn per driving period, a condition which
can be viewed as the “time-domain” counterpart to the n-photon resonance condition nhν =
ε0,n. By making the drive period commensurate with the coherence time, we showed that we
could still observe the Stückelberg oscillations, even though the discrete resonances were no
longer discernable.

We utilized strong driving and the LZS mechanism with higher-energy levels to achieve
both cooling and population inversion in our artificial atom. In Section 4.4, we described using a
microwave pumping scheme to cool the atomic degrees of freedom a factor 10-100 times colder
than the ambient dilution refrigerator temperature. The scheme involved pumping unwanted
thermal population to an ancillary excited state, from which it relaxed to the ground state. In
Section 4.5, we showed that by reversing the order, we could pump population through an
ancillary state to achieve inversion.

The energy level structure can be probed over extraordinarily large bandwidth using am-
plitude spectroscopy in Section 4.5. Since the LZS mechanism and Mach-Zehnder interference
are sensitive to the defining features in the energy level diagram (energy band slopes, level split-
tings, and their locations), the interference patterns that result from sweeping the amplitude are
a “fingerprint” of the artificial atom’s energy spectrum. Using amplitude spectroscopy at a fixed
driving frequency of only 185 MHz, we could access continuously multiple energy levels from
about 10 MHz out to beyond 120 GHz.

Large-amplitude driving and the LZS mechanism have application to quantum informa-
tion science and technology. Active cooling has utility as an “entropy pump” in state initial-
ization and refreshing ancilla qubits in quantum error correction protocols. Amplitude spec-
troscopy provides an means to ascertain over large bandwidth the energy level structure of a
qubit system beyond the lowest two levels. The Mach-Zehnder-type interference can facil-
itate nonadiabatic control schemes, in which the quantum interference at an avoided cross-
ing is used to achieve state transitions that approach the intrinsic coupling rate ∆. In cold
atoms and molecules, this kind of non-adiabatic control has been used to drive transitions that
would otherwise be challenging to realize in a weak-driving limit. In addition, this type of
non-adiabatic detuning is widely used for the implementation of single-qubit Z gates (phase
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gates) and coupled-qubit controlled-phase gates based on changing the energy-level separation
of qubit states (although not generally involving Mach-Zehnder-type interference).
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Appendices

A Quantum conjugate operators n̂ and φ̂

The correspondence between classical and quantum variables and their dynamics has been dis-
cussed in detail elsewhere Ref. [195, 196]. In this Appendix, we present several derivatives of
those works that are relavent to the present discussion.

The general prescription is to start with a classical representation of the circuit using cir-
cuit network theory. This generally comprises a network of branches and nodes. One chooses
either the branch or node variables, and proceeds to derive the classical Hamiltonian. For ex-
ample, the sum of the branch energies in terms of the branch variables will yield the classical
Hamiltonian. Alternatively, one can determine the Lagrangian of the classical circuit to obtain
its classical equations of motion, and then proceed to derive the classical Hamiltonian. In either
case, the classically conjugate variables satisfying a Poisson bracket equation are “transitioned”
via the correspondence principle to quantum operators satisfying a quantum commutation rela-
tion.

For our purposes here, we take the number of Cooper pairs n̂ and the Josephson phase φ̂
as the quantum operators [197]:

n̂|n〉 = n|n〉 (143)

φ̂|φ〉 = φ|φ〉 (144)

[φ̂, n̂] = i. (145)

As conjugate operators, their eigenstates are related through the Fourier transforms,

| n〉 =
1√
2π

∫ 2π

0

dφ e−in̂φ|φ〉 (146)

| φ〉 =
1√
2π

∑
n

einφ̂|n〉. (147)

The number operator n̂ and the phase operator φ̂ are then expressed in their respective conjugate
spaces via the relations

n̂|φ〉 = |φ〉1
i

∂

∂φ
〈φ| (148)

φ̂|n〉 = |n〉i ∂
∂n
〈n|. (149)

Translation of the number and phase is represented by the following relations,

ein0φ̂|n〉 = |n+ n0〉 (150)

e−in̂φ0|φ〉 = |φ− φ0〉 (151)
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Based on these relations, we can make the following equivalence:

cos φ̂ =
1

2

(
eiφ̂ + e−iφ̂

)
(152)

=
1

2

∑
n

|n+ 1〉〈n|+ |n− 1〉〈n| (153)

=
1

2

∑
n

|n+ 1〉〈n|+ |n〉〈n+ 1| (154)

B Two-level system Hamiltonian in the strong driving limit

The two-level-system dynamics in the strong driving regime can be obtained by moving to a
non-uniformly rotating frame with sinusoidal rotation frequency. One then rotates a second
time to make a resonance approximation.

Applying a classical RF field of amplitude A, the Hamiltonian is

H = −1

2

(
ε+ A cosωt ∆

∆ −ε− A cosωt

)
. (155)

We use cosωt rather than sinωt for pedagogical reasons only. We are interested in the gen-
eral case which includes the strongly driven regime, |a| ≥ ~ω and |a| ≥ ε,∆. Defining the
transformation,

Rz(Θ) = exp
[
−iσz

2
Θ
]

(156)

H̃ ≡ Rz(Θ)HRz(−Θ) +
σz
2
~Ω(t) (157)

Ω(t) =
A

~
cos(ωt) (158)

Θ =

∫ t

0

dt′Ω(t′) =
A

~ω
sinωt ≡ −λ sinωt (159)

where λ = A/~ω is a dimensionless scaling of the RF amplitude to the drive frequency, we can
obtain the form for the rotated Hamiltonian,

H̃ = −1

2

(
ε e−iΘ∆

eiΘ∆ −ε

)
= −1

2

(
ε e−iλ sinωt∆

eiλ sinωt∆ −ε

)
. (160)

The generating function for the Bessel functions of the first kind of order n is:

ex(t−1/t)/2 =
∞∑

n=−∞

Jn(x)tn (161)
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Identifying t ≡ exp(−iωt) and x ≡ λ, one obtains the off-diagonal factor:

∆e−iλ sinωt =
∞∑

n=−∞

∆Jn(λ)eiωnt (162)

≡
∞∑

n=−∞

∆ne
iωnt (163)

∆n = ∆Jn(λ) (164)

H̃ = −1

2

(
ε

∑∞
n=−∞∆ne

iωnt∑∞
n=−∞∆ne

−iωnt −ε

)
. (165)

For flux biases n~ω ≈ ε, only the nth Fourier harmonic of the off-diagonal term dominates. This
is effectively a resonance approximation. In its current form, all off-diagonal terms oscillate
(rotate) at a large frequency compared with the present rotating frame. By rotating at one of the
Fourier harmonic frequencies, Ω′ = nω, one reduces the Hamiltonian to

H̃n = −1

2

(
ε− ~nω

∑∞
m=−∞∆me

iω(m−n)t∑∞
m=−∞∆me

−iω(m−n)t −(ε− ~nω)

)
, (166)

in which only m = n term will exist within the resonance approximation. It is in this limit that
the diagonal energy terms are small compared with the coupling. Defining εn ≡ ε − ~nω, one
obtains in the resonance approximation,

H̃n = −1

2

(
εn ∆n

∆n −εn

)
. (167)
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C Summary of noise spectroscopy during free- and driven-
evolution

Free-evolution decoherence Driven-evolution Decoherence
Working frame Qubit frame Rotating frame
Quantization axis z′-axis X-axis
Nutation freq. level splitting νq Rabi frequency ν

R

Longitudinal relaxation
Method Inversion recovery [30, 187] Spin locking - T1ρ [7, 186]
Process T1 (= 1/Γ1) T1ρ (= 1/Γ1ρ)
Longitudinal decay z′-axis X-axis
Starting state |+z′〉 |±X〉
Steady state |−z′〉 |〈σ̂X〉=0〉
Decay rate Γ1 (exponential) Γ1ρ (exponential)
Decay law exp{−Γ1τ}, Γ1 = 1

2 Sx′(νq) exp{−( 1
2 Γ1 + Γν)τ}, Γν = 1

2 Sz′(νR
)

Noise susceptibility
• in general S⊥z′(νq) S⊥X(ν

R
)

• flux qubit Sx′(νq) Sx′(νq±νR≈νq), Sz′(νR)

Noise of interest Sx′(νq) Sz′(νR
)

Transverse decoherence
Method FID [30, 8], CPMG [11] Rabi [11, 188], Rotary echo [140]
Process T2 (= 1/Γ2) T2ρ (= 1/Γ2ρ)
Transverse decay x′−y′ plane Y −Z plane
Starting state e.g., |±x′,±y′〉 |−Z〉 (= |−z′〉)
Steady state |〈σ̂x′,y′〉=0〉 |〈σ̂Y,Z〉≈0〉
Decay rate
• Bloch-Redfield Γ2 = 1

2 Γ1 + Γϕ (exp.) Γ2ρ = 1
2 Γ1ρ + Γϕρ (exp.)

• 1/f -type noise exp.×Gaussian (linear) exp.×Gaussian×algebraic (quadratic)

Decay law (FID/Rabi) exp{− 1
2 Γ1τ − 1

2 〈δν
2〉τ2}

× cos(2π∆ντ)
exp{−( 3

4 Γ1 + 1
2 Γν)τ − 1

2 〈δν
2
R
〉τ2}

×[1 + ( 〈δν
2〉

ν
R
τ)2]−1/4 cos(2πνRτ)

Noise susceptibility
• in general Γ1: S⊥z′(νq); Γϕ: ∆ν inhom. Γ1ρ: S⊥X(ν

R
); Γϕρ: ν′

R
inhom.

• flux qubit Γ1: Sx′(νq); Γ1ρ: Sx′(νq±νR
≈νq), Sz′(νR

);
Γϕ: ∆ν inhom. Γϕρ: Sx′(νq), νR and ∆ν inhom.

Noise of interest 〈δν2〉 Γν = 1
2 Sz′(νR

)

Table 3: Comparison of decohering properties of a superconducting flux qubit during free
evolution and driven evolution (weak and resonant driving).
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